Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Рукович Александр Владупинистерство науки и высшего образования Российской Федерации Должность: Директор Федеральное государственное автономное образовательное учреждение высшего Дата подписания: 08.07.2024 11:24:03

Уникальный программный ключ:

Уникальный программный ключ: образования f45eb7c44954caac05ea7d4GFBEPO-BOCTQUHЬІЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ М.К. AMMOCOBA»

Технический институт (филиал) ФГАОУ ВО «СВФУ» в г. Нерюнгри

Кафедра электропривода и автоматизации производственных процессов

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине (модулю)

Б1.О.27 Общая энергетика

Направление подготовки
13.03.02 «Электроэнергетика и электротехника» профиль «Электропривод и автоматика» Квалификация (степень) выпускника – бакалавр Форма обучения – заочная Группа 3-Б-ЭП-24(5)

УТВЕРЖДЕНО на заседании обеспечивающей кафедры электропривода и автоматизации
производственных процессов
« <u>10</u> » <u>мая</u> 20 <u>24</u> г. протокол № <u>14</u>
и.о. зав. кафедрой ЭПиАПП
А.В.Рукович
УТВЕРЖДЕНО на заседании выпускающей кафедры электропривода и автоматизации
производственных процессов
« <u>29</u> » <u>апреля</u> 20 <u>24</u> г. протокол № <u>04</u>

« <u>10</u> » <u>мая</u> <u>20 24</u> г. протокол № <u>14</u>
и.о. зав. кафедрой ЭПиАПП
Эксперт:
Рукович А.В., доцент кафедры ЭПиАПП
Ф.И.О., должность, организация, подпись
Times, demanders, obtainisadim, nedimes
Эксперт:
_ Дьячковский Д.К., доцент кафедры ЭПиАПП
Ф.И.О., должность, организация, подпись
Ф.11.О., должность, организация, поднись

Составитель:

Шабо К.Я., доцент кафедры ЭПиАПП ТИ (ф) СВФУ

Показатели, критерии и шкала оценивания

Коды оцениваемых	Индикаторы	Показатель	IIIka	лы оценивания урові	ня
компетенций	достижения	оценивания		сформированности	
компотонции	компетенций	оденивания		ций/элементов компе	тенпий
	100,1110,1011,1111	(по п.1.2.РПД)	1101111101011		
			Уровни	Критерии	Оценк
			освоения	оценивания	a
				(7007777770777)	
				(дескрипторы)	
ПК-1 Способен	ПК-1.4 Решает	Знать: основные	Освоено	Дан полный,	Зачтен
принимать участие	вопросы	виды энергоресурсов,		развернутый	o
в проектировании	присоединения	способы		ответ на	
объектов	К	преобразования их в		поставленный	
профессиональной	энергосистеме,	электрическую и		вопрос, показано	
деятельности в	выбирает	тепловую энергию,		умение выделить	
соответствии с	способ	основные типы		существенные и	
техническим	канализации	энергетических		несущественные	
заданием и	электроэнергии	установок; уметь:		признаки,	
нормативно-		использовать методы		причинно-	
технической		оценки основных		следственные	
документацией,		видов энергоресурсов		связи. Ответ	
соблюдая		и преобразования их		четко	
различные		в электрическую и		структурирован,	
технические,		тепловую энергию;		логичен, изложен	
энергоэф-		владеть навыками		литературным	
фективные и		анализа		языком с	
экологические		технологических		использованием	
требования		схем производства		современной	
		электрической и		гистологической	
		тепловой энергии.		терминологии.	
		владеть: понятийным		Могут быть	
		аппаратом,		допущены 2-3	
		классификации типов		неточности или	
		электростанций и их		незначительные	
		основного		ошибки,	
		оборудования;		исправленные	
		владеть методикой		студентом с	
		построения		помощью	
		графической		преподавателя. В	
		энтропританцией		практическом	
		циклов		задании могут	
		технологического		быть допущены	
		процесса выработки		2-3 фактические	
		электрической и		ошибки	
		тепловой энергии;			
		владеть методикой	Не	Ответ	He
		предварительного	освоено	представляет	зачтен
		расчета параметров		собой	О
		· •		разрозненные	

оборудования и	знания с
составляющих	существенными
преобразования	ошибками по
энергии.	вопросу.
	Присутствуют
	фрагментарность,
	нелогичность
	изложения.
	Студент не
	осознает связь
	обсуждаемого
	вопроса по
	билету с другими
	объектами
	дисциплины.
	Отсутствуют
	выводы,
	конкретизация и
	доказательность
	изложения. Речь
	неграмотная,
	терминология не
	используется.
	Дополнительные
	и уточняющие
	вопросы
	преподавателя не
	приводят к
	коррекции ответа
	студента. В
	практическом
	задании
	допущено более 5
	фактических
	ошибок. или
	Ответ на вопрос
	полностью
	отсутствует или
	Отказ от ответа
	OTRUS OF OTDOTA
 <u> </u>	I

6.2. Примерные контрольные задания (вопросы) для промежуточной аттестации

Тестовые задания по курсу дисциплины

- 1. Дополните ### закон термодинамики закон превращения и сохранения энергии
- 2. Дополните ### закон термодинамики устанавливает условия протекания и направленность макроскопических процессов в системах, состоящих из большого количества частиц

- 3. Дополните ### состоянием называется состояние тела, при котором во всех его точках объема P, v и T и все другие физические свойства одинаковы.
- 4. Дополните ### одна из физических величин, характеризующих тепловое состояние тела или системы тел. В открытых системах данная величина может понижаться за счет увеличения ее во внешней среде
- 5. Дополните ### вещество в твердом, жидком или газообразном состоянии, обладающее энергией, которая может быть превращена в используемый вид энергии.
- 6. Дополните ###— источники энергии, образующиеся на основе постоянно существующих или периодически возникающих процессов в природе, а также жизненном цикле растительного и животного мира и жизнедеятельности человеческого общества.
- 7. Дополните ###— комплекс взаимосвязных систем (от добычи и производства энергетических ресурсов до конечного потребления энергии), состоящих из энергетических объектов, объединенных для обеспечения потребителей всеми видами энергии.
- 8. Отметьте правильный ответ Уравнение первого закона термодинамики имеет следующий вид:

```
Q = (U2 - L) + L Q = (U2 + U1) + L

Q = (U2 - U1) + L

Q = (U2 + U1) - L
```

- 9. Дополните ### это газ, у которого отсутствуют силы взаимного притяжения и отталкивания между молекулами и размеры молекул не учитываются
- 10. Отметьте правильный ответ Уравнение состояния идеального газа:

 $P \cdot v = R/T$ $P/v = R \cdot T$ $P \cdot T = R \cdot v$ $P \cdot v = R \cdot T$

- 11. Дополните ### устройство, в котором при перемещении газа по каналу происходит его расширение с уменьшением давления и увеличением скорости.
- 12. Дополните ### устройство, в канале которого происходит сжатие рабочего тела с увеличением его давления и уменьшением скорости.
- 13. Дополните ### явление, при котором пар или газ переходит с высокого давления на низкое без совершения внешней работы и без подвода или отвода теплоты.
 - 14. Дополните ### процесс перехода твердого вещества непосредственно в пар
- 15. Отметьте правильный ответ Термический к.п.д. цикла Ренкина определяется по уравнению:

$$\begin{split} \eta t &= (q1-q2)/q2 \\ \eta t &= (q1-q2)/q1 \\ \eta t &= (q1+q2)/q1 \\ \eta t &= (q1-q2) {\cdot} q1 \end{split}$$

- 16. Дополните ### процесс передачи теплоты, происходящий при непосредственном контакте тел или частицами тел с различными температурами и представляет собой молекулярный процесс передачи теплоты.
- 17. Дополните ### это перенос теплоты при перемещении и перемешивании всей массы неравномерно нагретых жидкости или газа.
 - 18. Дополните ### одновременный перенос теплоты конвекцией и теплопроводностью. 19. Дополните ### называется передача теплоты от горячего теплоносителя к холодному теплоносителю через стенку, разделяющую эти теплоносители.

Критерии оценки теста

№ п/п	Процент выполненных	Оценка	Баллы
	заданий		
1	90-100	Отлично	25-30
2	50-90	Хорошо	20-25
3	20-50	Удовлетворительно	10-20
4	0-20	Неудовлетворительно	0-10

Комплект заданий для практических работ по разделу «Основы термодинамики»

Тема №1: «Основные термодинамические процессы. Расчет параметров рабочих тел»

Задание 1: Воздух, имеющий начальное давление P1=0,1МПа и температуру t1=20°C, сжимается в одноступенчатом поршневом компрессоре до давления P2. Сжатие может быть изотермическим, адиабатным и политропным с показателем политропы п. Определить для каждого процесса сжатия все начальные и конечные параметры воздуха, считая его идеальным газом; отведенную от воздуха теплоту Q, кВт и теоретическую мощность привода компрессора N, кВт, если производительность компрессора G, кг/с. Дать сводную таблицу и изображение процессов сжатия в pv- и Ts-диаграммах.

Таблица: Варианты

Последняя	n	Предпоследняя	Р2, МПа	G, кг/с
цифра шифра		цифра шифра		
0	1,10	0	0,8	0,1
1	1,12	1	0,9	0,2
2	1,14	2	1,0	0,3
3	1,16	3	1,1	0,4
4	1,18	4	1,2	0,5
5	1,20	5	1,3	0,6
6	1,22	6	1,4	0,7
7	1,24	7	1,5	0,8
8	1,26	8	1,6	0,9
9	1,28	9	1,7	1,0

Задание 2: Рассчитать теоретический цикл двигателя внутреннего сгорания (ДВС), считая, что рабочим тело является воздух с начальными параметрами $P1=0,1M\Pi a$, $t1=20^{\circ}C$. Определить основные параметры рабочего тела P, V, T во всех точках цикла, изменение внутренней энергии ΔU , энтальпии Δh , энтропии ΔS для всех процессов и для цикла; теплоту и работу для процессов и для цикла, а также термический КПД цикла. Дать сводную таблицу и изобразить цикл в PV- и TS-диаграммах.

Таблица: Варианты

Последня	Цикл	Степен	Предпоследня	Степень	Степень
я цифра		Ь	я цифра	повышени	предварительног
шифра		сжатия,	шифра	Я	о расширения, ρ
		3		давления,	
				λ	
0	Отто *)	8	0	2,4	2,1
1		9	1	2,3	2,0
2		10	2	2,2	1,9
3		16	3	2,1	1,8
4	Дизеля **)	17	4	2,0	1,7
5		18	5	1,9	1,6
6		12	6	1,8	1,5
7	Тринклера	13	7	1,7	1,4
8	-Сабатэ	14	8	1,6	1,3
9		15	9	1,5	1,2

Примечание: независимо от исходных данных принимать *) ρ =1 для циклов с изохорным подводом теплоты (цикл Отто) и **) λ =1 для циклов с изобарным подводом теплоты (цикл Дизеля).

Задание 3: Определить эффективную мощность Ne газотурбинной установки (ГТУ) без регенерации теплоты и ее эффективный КПД по заданной степени повышения давления 2 1 β = P P/, известным адиабатным КПД турбины η T и компрессора η K , температуре воздуха перед компрессором 1 t , температуре газа перед турбиной 3 t и по расходу воздуха через ГТУ GBO3 . Изобразить цикл ГТУ в PV- и TS- диаграммах. Показать, как зависит термический КПД ГТУ от степени повышения давления β

Таблица: Варианты

Последняя	t1,°C	t3, °C	β	Предпоследняя	ηк	ηT	GBO3,
цифра				цифра шифра			кг/с
шифра							
0	30	850	7,2	0	0,82	0,89	57
1	27	830	9,0	1	0,81	0,88	55
2	24	880	8,8	2	0,79	0,85	52
3	20	900	8,5	3	0,82	0,87	50
4	17	920	8,2	4	0,81	0,86	48
5	14	860	8,0	5	0,80	0,84	45
6	12	840	7,5	6	0,79	0,82	42
7	10	820	7,0	7	0,78	0,86	40
8	7	800	6,5	8	0,77	0,83	38
9	6	780	6,2	9	0,76	0,85	35

Тема №2: «Состав топлива. Тепловой баланс и КПД котлоагрегата».

Задание 1: Задано топливо и паропроизводительность котлоагрегата D. Определить состав топлива по рабочей массе и его низшую теплоту сгорания, способ сжигания топлива, тип топки, значение коэффициента избытка воздуха в топке α T и в

уходящих из топки газах α ух по величине присоса воздуха по газовому тракту $\Delta \alpha$; найти теоретически необходимое количество воздуха V0 для сгорания 1кг (1м3) топлива и объемы продуктов сгорания при α ух, а также энтальпию уходящих газов 1ух при заданной температуре уходящих газов 1ух и их влагосодержании 1ух

Таблица: Варианты

Послед-	Вид топлива	Предпоследняя	D, Т/ч	Δα	tyx, °C
RRH		цифра шифра			-
цифра					
шифра					
0	Кузнецкий уголь Г (каменный,	0	160	0,15	130
	газовый)				
	Мазут малосернистый				
1	y	1	20	0,16	130
2	Газ из газопровода "Средняя	2	10	0,18	130
2	Азия - Центр"	2	10	0,18	130
	Челябинский уголь БЗ (бурый)				
3		3	120	0,20	140
	Мазут сернистый	3	120	0,20	140
	Газ из газопровода "Бухара –				
4	Урал"	4	25	0,22	140
	Variana Amurani in an F2	7	23	0,22	140
5	Канско-Ачинский уголь Б2 (бурый)	5	15	0,24	140
	(Оурый)				
	Мазут высокосернистый Газ				
6	из газопровода "Саратов –	6	80	0,26	150
	Москва"				
	Экибастузский уголь СС				
7	(бурый, слабоспекающийся)	7	30	0,28	150
	,				
8		8	20	030	150
9		9	30	0,32	150

Задание 2: Для условий задачи 1 определить потерю теплоты с уходящими газами q2, составить тепловой баланс котельного агрегата и определить его КПД брутто. Определить расход натурального В и условного Ву топлив, испарительность натурального топлива. Давление пара в котле P1, температуры перегретого пара t1 и питательной воды tПВ взять в соответствии с вариантом.

Таблица: Варианты

Предпоследняя	P1,	°C		Предпоследняя	P1,	°C	
цифра шифра	бар	t1	tΠB	цифра шифра	бар	t1	tΠB
0	240	560	225	5	60	535	200
1	140	555	220	6	40	530	195
2	120	550	215	7	50	525	190
3	100	545	210	8	70	515	185
4	80	540	205	9	90	510	180

Критерии оценивания практической работы

Компетенции	Характеристика ответа на теоретический вопрос / выполнения практического задания	Количество набранных баллов
ПК-1	Работа выполнена в соответствии с методическими указаниями. Все расчеты соответствуютметодическим указаниям, студент четко и профессионально отвечает на дополнительные вопросы.	30-35
	Работа выполнена в соответствии с методическими указаниями. Все разделы и расчеты соответствуют методическим указаниям, студент слабо ориентируется в чтении чертежа работы, не всегда профессионально отвечает на дополнительные вопросы	25-30
	Работа выполнена в соответствии с методическими указаниями. Все разделы и расчеты соответствуют методическим указаниям, студент не ориентируется в чтении чертежа работы, непрофессионально отвечает на дополнительные вопросы.	15-25
	Работа выполнена не в соответствии с методическими указаниями. Все расчеты имеют ошибки и требуют перерасчета, студент слабо ориентируется в чтении чертежа работы, непрофессионально отвечает на дополнительные вопросы	0-15

Методические материалы, определяющие процедуры оценивания

Характеристики	
процедуры	
Вид процедуры	зачет
Цель процедуры	выявить степень сформированности компетенции ПК-1
Локальные акты вуза,	Положение о проведении текущего контроля
регламентирующие	успеваемости и промежуточной аттестации
проведение процедуры	обучающихся СВФУ, версия 3.0, утверждено ректором
	СВФУ 19.02.2019 г.
	Положение о балльно-рейтинговой системе в СВФУ,
	версия 4.0, утверждено 21.02.2018 г.

Субъекты, на которых	студенты 3 курса бакалавриата
направлена процедура	
Период проведения	Зимняя зачетная неделя
процедуры	
Требования к помещениям и	-
материально-техническим	
средствам	
Требования к банку	-
оценочных средств	
Описание проведения	-
процедуры	
Шкалы оценивания	Шкала оценивания результатов приведена в п.6.1. РПД.
результатов	
Результаты процедуры	В результате сдачи всех заданий для СРС студенту
	необходимо набрать 60 баллов, чтобы получить зачет.