Документ подписан простой электронной подписью Информация о владельце: ФИО: Рукович Александр Владимирович

Должность: Директор
Дата подписания: 30.05.2025 15:00:32
Министерство образования и науки Российской Федерации
Уникальный программный ключСЕВЕРО-ВОСТОЧНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ М.К. АММОСОВА»
145eb7c44954caac05ea7d4f32eb8d7d6b3cb26ae6d9b4bdab94addadb7d5b4bdab94addadb7db4bdab94addadb7d5b4bdab94addadb7db4bdab94addadb7d5b4bdab94addadb7db4bdab94addadb7db4bdab94addadb7db4bdab94addadb7db4bdab94addadb7db4bdab94addadb7db4bdab94addadb7db4bdab94addadb7db4bdab94addadb7db4bdab94addadb7db4bdab94addadb7db4bdab94addadb7db4bdab94addadb7db4bdab94addadb7db4bdab94addadb7db4bdab94addadbAbbAbdab94addadbAbdab94addadbAbdab94addadbAbdab94addadbAbdab94addadbAbdab94addadbAbdab94addadbAbdab94addadbAbdab94addadbA

Кафедра Математики и информатики

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Б1.О.16 Методы оптимизации

для программы бакалавриата по направлению подготовки 09.03.03 «Прикладная информатика» Направленность (профиль) программы: Прикладная информатика в менеджменте

Форма обучения: заочная

Нерюнгри 2023

УТВЕРЖДЕНО на заседании			
выпускающей кафедры	МиИ		
« <u>05</u> » <u>05</u> 20 <u>25</u> г., прото	кол № 10		
Заведующий кафедрой	1	Самохина В.М.	
« <u>05</u> » <u>05</u> 20 <u>33</u> г.		,	
УТВЕРЖДЕНО на заседании			
обеспечивающей кафедры	МиИ		
« <u>05</u> » <u>05</u> 20 <u>25</u> г., прото	кол № 10		
Заведующий кафедрой	1	Самохина В.М.	
« <u>05</u> » <u>05</u> 20 <u>23</u> г.			
СОГЛАСОВАНО:			
Эксперты ¹ :			
Похорукова М.Ю., к.т.н., доцент			Souf
Ф.И.О., де	лжность, организация		подпись
Юданова В.В., ст. преподавател			Bell
Ф.И.О., до	элжность, организация		подпись
СОСТАВИТЕЛЬ (И):			
Самохина В.М., к.п.н, доцент ка	фелры МиИ		1
	лжность, организация		подпись

¹ Эксперт первый: со стороны выпускающей кафедры (или работодатель). Эксперт второй: со стороны обеспечивающей кафедры.

Паспорт фонда оценочных средств

		machopi wor	іда оценочных средств	
		Код	Требования к уровню	
	Контролируемые	контролируем	усвоения компетенции	Наименование
$N_{\underline{0}}$	разделы (темы)	ой		оценочного средства
	раздены (темы)	компетенции		одене шеге средетва
		(или ее части)		
1		ОПК-1	Знает основы	Экзамен
	Введение.	Способен	методов оптимизации.	Домашняя работа
		применять		тестирование
2	Линейное	естественнон	Умеет решать	Экзамен
		аучные и	стандартные	Домашняя работа
	программирование	общеинжене	профессиональные	тестирование
3		рные знания,	задачи с применением	Экзамен
	Транспортная	методы	естественнонаучных	Домашняя работа
	задача	математичес	знаний, правильно	тестирование
	311/11 -11	кого анализа	классифицирует	
4	Симплексный	И	конкретную	Экзамен
	метод (СМ)	моделирован	прикладную задачу,	Домашняя работа
	решения ЗЛП	ия,	выбирет наиболее	тестирование
5	•	теоретическо	подходящий метод	РГР
	Метод	го и	решения и	Экзамен
	искусственного	эксперимент	реализовывает его в	Домашняя работа
	базиса	ального	виде алгоритма	Activities bases
6	Элементы теории	исследовани	7	РГР
	двойственности в	ЯВ	Знает основы	Экзамен
	линейном	профессиона	методов оптимизации.	Домашняя работа
	программировании	льной		, ,
7		деятельност		Экзамен
	Безусловная	И		Домашняя работа
	оптимизация			, ,
				Экзамен
	Выпуклое			Домашняя работа
	программирование			Actualities bacola
		I		

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«СЕВЕРО-ВОСТОЧНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ М.К. АММОСОВА»

Технический институт (филиал) ФГАОУ ВО «СВФУ» в г. Нерюнгри

КАФЕДРА МАТЕМАТИКИ И ИНФОРМАТИКИ

Домашние задания

6 семестр

Домашняя работа 1

Решить задачу графическим способом: **1.** $F = 30x_1 + 40x_2 \rightarrow max$ $\begin{cases} 12x_1 + 4x_2 \leq 300, \\ 4x_1 + 4x_2 \leq 120, \end{cases}$

$$(3x_1 + 12x_2 \le 252, x_1, x_2 \ge 0.$$

 $2. F = x_1 + x_2 \longrightarrow max$

$$(2x_1 + 4x_2 \le 16,$$

$$\begin{cases} -4x_1 + 2x_2 \le 8, \\ x_1 + 3x_2 \ge 9, \end{cases}$$

$$x_1, x_2 \ge 0.$$

3. $F = x_1 + x_2 \rightarrow max$

$$(x_1 + 2x_2 \le 14,$$

$$\left\{ -5x_1 + 3x_2 \le 15, \right.$$

$$(4x_1 + 6x_2 \ge 24,$$

$$x_1, x_2 \geq 0.$$

$$4. F = x_1 + 2x_2 \rightarrow max$$

$$\left(4x_1-2x_2\leq 12,\right.$$

$$\left\{-x_1 + 3x_2 \le 6,\right.$$

$$(2x_1 + 4x_2 \ge 16,$$

$$x_1, x_2 \geq 0.$$

$$5. F = 2x_1 - x_2 \rightarrow max$$

$$\begin{cases} 3x_1 - 2x_2 \le 12, \\ -x_1 + 2x_2 \le 8, \end{cases}$$

$$\begin{cases} -x_1 + 2x_2 \le 6, \\ 2x_1 + 3x_2 \ge 6, \end{cases}$$

$$x_1, x_2 \ge 0.$$

Домашняя работа 2

Решить задачу двойственным симплекс-методом.

1.
$$F = x_1 + x_2 + 2x_3 \rightarrow max$$

 $\begin{cases} x_1 + x_2 + x_3 = 8, \\ x_1 - x_2 \ge 4, \\ x_1 + 2x_2 \ge 6, \end{cases}$
 $x_1, x_2, x_3 \ge 0.$
2. $F = 4x_1 + 7x_2 + 8x_3 + 5x_4 \rightarrow min$
 $\begin{cases} x_1 + x_2 + 2x_4 \ge 4, \\ 2x_1 + x_2 + 2x_3 \ge 6, \\ x_1, \dots, x_4 \ge 0. \end{cases}$
3. $F = 2x_1 + 3x_2 + 5x_4 \rightarrow max$
 $\begin{cases} 2x_1 - x_2 + x_3 = -12, \\ x_1 + 2x_2 + x_4 = 10, \\ 3x_1 - 2x_2 \ge 18, \\ x_1, \dots, x_4 \ge 0. \end{cases}$
4. $F = x_1 - 2x_2 - 4x_3 + 2x_4 + 3x_5 \rightarrow max$
 $\begin{cases} 2x_1 + 3x_2 - x_3 + x_4 + x_5 = 18, \\ -2x_2 + 3x_3 + x_4 \ge 24, \\ -x_1 + 4x_2 - x_4 \ge 12, \\ x_1, \dots, x_5 \ge 0. \end{cases}$

Домашняя работа 3

Составить опорные планы различными методами:

- методом северо-западного угла;
- -методом минимального элемента;
- методом Фогеля;
- методом двойного предпочтения.

Сравнить значения суммарной стоимости перевозок по каждому плану. Сделать вывод.

1.

A_i B_j	B ₁	B ₂	B ₃	B 4	ai
A_1	2	3	2	4	30
A_2	3	2	5	1	40
A3	4	3	2	6	20
b _j	20	30	30	10	90

A_i	B ₁	B ₂	B ₃	B 4	B 5	a
A_1	2	7	3	6	2	30
A_2	9	4	5	7	3	70
A_3	5	7	6	2	4	50
b _j	10	40	20	60	20	150

A_i	B 1	B ₂	B 3	B 4	B 5	ai
A_1	4	2	5	7	6	20
A_2	7	8	3	4	5	110
A ₃	2	1	4	3	2	120
b _j	70	40	30	60	50	250

A_i	B1	B ₂	B 3	B 4	B 5	a_i
A_1	2	8	4	6	3	120
A_2	3	2	5	2	6	30
A_3	6	5	8	7	4	40
A_4	3	4	4	2	1	60
b _j	30	90	80	20	30	250

Домашняя работа 4

Компетентностно - ориентированное задание

Задание 1. На трех базах A_1, A_2 , A_3 имеется однородный груз в количестве a_1 т., на базе A_1 , a_2 т., на базе A_2 , a_3 т., на базе A_3 . Полученный груз требуется перевести в пять пунктов: b_1 т. в пункт B_1 . B_2 т. в пункт B_2 . B_3 т. в пункт B_3 . B_4 т. в пункт B_4 . B_5 т. в пункт B_5 .

Затраты на перевозку груза между пунктами поставок и потребления заданы матрицей тарифов С:

$$\begin{pmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} \\ C_{21} & C_{22} & C_{23} & C_{24} & C_{25} \\ C_{31} & C_{32} & C_{33} & C_{34} & C_{35} \end{pmatrix}$$

Спланировать перевозки так, чтобы их общая стоимость была минимальной

СПЛані	тровать персвоз	зки так, чтооы их оощая стоимость оыла миним	альной.
1.	$a_1 = 200$	$C = \begin{pmatrix} 12 & 15 & 21 & 14 & 17 \\ 14 & 8 & 15 & 11 & 21 \\ 19 & 16 & 26 & 12 & 20 \end{pmatrix}$	b ₁ =90
	$a_2 = 150$	$C = (14 \ 8 \ 15 \ 11 \ 21)$	$b_2=100$
	$a_3 = 150$	\19 16 26 12 20/	$b_3 = 70$
			b ₄ =130
			b ₅ =110
2.	$a_1 = 300$	$C = \begin{pmatrix} 12 & 21 & 9 & 10 & 16 \\ 13 & 15 & 11 & 13 & 21 \\ 19 & 26 & 12 & 17 & 20 \end{pmatrix}$	$b_1 = 180$
	$a_2 = 280$	$C = (13 \ 15 \ 11 \ 13 \ 21)$	$b_2=140$
	$a_3 = 220$	\19 26 12 17 20/	$b_3=190$
			b ₄ =120
			$b_5=170$
3.	$a_1 = 250$	$C = \begin{pmatrix} 12 & 8 & 21 & 10 & 15 \\ 13 & 4 & 15 & 13 & 21 \\ 19 & 16 & 26 & 17 & 20 \end{pmatrix}$	$b_1 = 180$
	$a_2 = 200$	$C = (13 \ 4 \ 15 \ 13 \ 21)$	$b_2 = 120$
	$a_3 = 150$	\19 1626 1720/	$b_3 = 90$
			$b_4=105$
			$b_5=105$
4.	$a_1 = 400$	$C = \begin{pmatrix} 13 & 9 & 5 & 11 & 17 \\ 14 & 5 & 12 & 14 & 22 \\ 20 & 17 & 13 & 18 & 21 \end{pmatrix}$	$b_1 = 200$
	$a_2 = 250$	$C = (14 \ 5 \ 12 \ 14 \ 22)$	$b_2=170$
	$a_3 = 350$	\20 17 13 18 21/	$b_3 = 230$
			b ₄ =225
			b ₅ =175
5.	$a_1 = 150$	$C = \begin{pmatrix} 8 & 20 & 7 & 11 & 16 \\ 4 & 14 & 12 & 15 & 17 \\ 15 & 22 & 11 & 12 & 19 \end{pmatrix}$	$b_1 = 160$
	$a_2 = 200$	C = (4 14 12 15 17)	$b_2 = 70$
	$a_3 = 150$	\15 22 11 12 19/	$b_3 = 90$
			b ₄ =80
			b ₅ =100

6.	$a_1 = 280$	(28 12 7 18 7)	$b_1=170$
	$a_2 = 300$	$C = \begin{pmatrix} 35 & 14 & 12 & 15 & 3 \\ 30 & 16 & 11 & 25 & 15 \end{pmatrix}$	$b_2=120$
	$a_3 = 220$	\30 16 11 25 15/	$b_3=190$
			$b_4=140$
			$b_5=180$
7.	$a_1 = 150$	(14 6 4 9 4)	$b_1 = 180$
	$a_2 = 250$	$C = (17 \ 109 \ 11 \ 5)$	$b_2=120$
	$a_3 = 200$	$C = \begin{pmatrix} 14 & 6 & 4 & 9 & 4 \\ 17 & 10 & 9 & 11 & 5 \\ 15 & 11 & 6 & 13 & 8 \end{pmatrix}$	$b_3 = 90$
			$b_4=105$
			$b_5=105$
8.	a ₁ =250	(9 15 35 20 7 \	b ₁ =300
	a ₂ =400	$C = (15 \ 35 \ 12 \ 11 \ 6)$	$b_2=160$
	$a_3 = 350$	\16 19 40 15 25/	$b_3 = 220$
			$b_4=180$
			$b_5=140$
9.	a ₁ =150	$C = \begin{pmatrix} 20 & 3 & 9 & 15 & 35 \\ 14 & 10 & 12 & 20 & 46 \end{pmatrix}$	b ₁ =100
	$a_2=150$	$C = (14 \ 10 \ 12 \ 20 \ 46)$	$b_2 = 70$
	a ₃ =200	\25 11 16 19 48/	$b_3=130$
			$b_4=110$
			$b_5=90$
10.	a ₁ =280	$C = \begin{pmatrix} 7 & 3 & 9 & 15 & 35 \\ 3 & 10 & 12 & 20 & 46 \end{pmatrix}$	b ₁ =190
	a ₂ =220	$C = (3 \ 10 \ 12 \ 20 \ 46)$	$b_2=140$
	$a_3 = 300$	\15 11 16 19 46/	$b_3=180$
			b ₄ =120
			b ₅ =170

7 семестр

Домашняя работа 1

Составить двойственную задачу и найти ее решение из оследней симплекс-таблицы прямой задачи (5-7).

5.
$$F = 9x_1 + 10x_2 + 16x_3 \rightarrow max$$

 $\begin{cases} 18x_1 + 15x_2 + 12x_3 \le 360, \\ 6x_1 + 4x_2 + 8x_3 \le 192, \\ 5x_1 + 3x_2 + 3x_3 \le 180, \end{cases}$
 $x_1, x_2, x_3 \ge 0.$
6. $F = 2x_1 - 6x_2 + 5x_5 \rightarrow max$
 $\begin{cases} -2x_1 + x_2 + x_3 + x_5 = 20, \\ -x_1 - 2x_2 + x_4 + 3x_5 = 24, \\ 3x_1 - x_2 - 12x_5 + x_6 = 18, \end{cases}$
 $x_1, \dots, x_6 \ge 0.$
7. $F = 2x_1 + x_2 - x_3 + x_4 - x_5 \rightarrow max$
 $\begin{cases} x_1 + x_2 + x_3 = 5, \\ 2x_1 + x_2 + x_4 = 9, \\ x_1 + 2x_2 + x_5 = 7, \end{cases}$
 $x_1, \dots, x_5 \ge 0.$

Домашняя работа 2 Методы безусловной оптимизации

Найти экстремумы функции одной переменной (

1.
$$f = x^2 + 4x + 6 \rightarrow extr$$
.

2.
$$f = 2 + x - x^2 \rightarrow extr$$
.
3. $f = x^3 - 3x^2 + 3x + 2 \rightarrow ex$

3.
$$f = x^3 - 3x^2 + 3x + 2 \rightarrow extr$$
.
4. $f = 2x^3 + 3x^2 - 12x + 5 \rightarrow extr$.

5.
$$f = (x-1)^3 \rightarrow extr$$
.
6. $f = (x-1)^4 \rightarrow extr$.

$$6. f = (x-1)^4 \rightarrow extr$$

```
Найти экстремумы функции многих переменных (1-8).
```

3.
$$f = x^2 + xy + y^2 - 2x - y \rightarrow extr.$$

4.
$$f = x^2 - y^2 - 4x + 6y \rightarrow extr.$$

5.
$$f = 3x^2 + 4xy + y^2 - 8x - 12y \rightarrow extr.$$

6.
$$f = x^2 + y^2 + z^2 - xy + x - 2z \rightarrow extr.$$

7.
$$f = 3xy - x^2y - xy^2 \to extr.$$

8.
$$f = x^4 + y^4 - 2x^2 + 4xy - 2y^2 \rightarrow extr.$$

Домашняя работа 3

- 1. Менеджер продает 400 водяных кроватей в год, причем издержки хранения равны 1 тыс. руб. за кровать в день и издержки заказа 40 тыс. руб. Количество рабочих дней равно 250 и время выполнения заказа 6 дней. Каков оптимальный размер заказа? Чему равна точка восстановления запаса? Каков оптимальный размер заказа, если издержка хранения равны 1,5 тыс. руб.?
- 2. Компания закупает у завода-изготовителя лобовые стекла грузовых автомобилей для розничной продажи. В год, за 200 рабочих дней, реализуется около 10 000 стекол. Издержки заказа для компании составляют 400 тыс. руб., ежедневные издержки хранения одного стекла 6 тыс. руб. Чему равен оптимальный размер заказа? Каковы минимальные годовые совокупные издержки?
- 3. Годовой заказ на тостер равен 3 000 единиц, или 10 в день. Издержки заказа равны 25 тыс. руб., издержки хранения 0,4 тыс. руб. в день. Так как тостер является очень популярным среди покупателей, то в случае отсутствия товара покупатели обычно согласны подождать пока не подойдет следующий заказ. Сколько тостеров будет заказывать менеджер. Чему равны совокупные издержки?

Домашняя работа

призвана систематизировать знания, позволяет повторить и закрепить материал. Студент выполняет вариант индивидуальной домашней работы, номер которого совпадает с номером его фамилии в аудиторном журнале. Домашние задания выполняются в соответствии с графиком изучения дисциплины и сдаются на проверку преподавателю.

Критерии оценки домашней работы:

ДР выполнена полностью, задачи выполнены правильно, аккуратно -10 баллов.

 ${\rm ДP}$ выполнена полностью, ход решения заданий верен, имеются неточности в вычисления и построениях — 8-9 баллов.

 ${\rm ДP}$ выполнена не полностью, ход решения заданий верен, имеются неточности в вычисления и построениях – 5-7 баллов.

 $\ensuremath{\mathsf{LP}}$ выполнена не полностью, ход решения заданий не верен, имеются неточности в вычисления и построениях — 3-4 балла.

ИДР выполнена не полностью, ход решения заданий не верен, имеются неточности в вычисления и построениях, сдана не в предусмотренные сроки -1-2 балла.

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«СЕВЕРО-ВОСТОЧНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ М.К. АММОСОВА»

Технический институт (филиал) ФГАОУ ВО «СВФУ» в г. Нерюнгри

КАФЕДРА МАТЕМАТИКИ И ИНФОРМАТИКИ

Программа экзамена

Экзамен по дисциплине проводится в форме собеседования по экзаменационным билетам. Экзаменационный билет включает один теоретический вопрос и два практических задания.

Вопросы к экзамену:

Перечень теоретических вопросов:

- 1. Экономико-математические модели: задача объемного планирования многопродуктового производства, классическая матричная транспортная задача, задача о диете (о смесях), задача о ранце (о загрузке судна), задача о назначениях, задача одномерного раскроя материалов.
- 2. Формы записи:общая, симметричная, каноническая ЗЛП.
- 3. Графическое решение двумерных ЗЛП.
- 4. Метод "северо-западного угла" для нахождения начального опорного плана перевозок.
- 5. Метод минимальной цены для нахождения начального опорного плана
- 6. Метод Фогеля
- 7. Метод двойного предпочтения
- 8. Метод потенциалов.
- 9. Правила пересчета симплексной таблицы при переходе к новому базису.
- 10. Признак неразрешимости ЗЛП. Признак оптимальности.

Программа экзамена (7 семестр)

- 1. Метод искусственного базиса
- 2. Двойственная задача для канонической ЗЛП. Свойства взаимосопряженных симметричных ЗЛП. Теорема двойственности.
- 3. Определения выпуклой, строго выпуклой, вогнутой и строго вогнутой функций. Примеры. Условия экстремума.
- 4. Методы последовательных приближений. Общая схема ПМ. Графическая интерпретация ПМ.
- 5. Градиентный метод (ГМ). Антиградиент направление наискорейшего спуска.
- 6. Общая схема ГМ. Полношаговый ГМ (метод наискорейшего спуска). Графическая интерпретация полношагового ГМ.
- 7. Задача выпуклого программирования (ЗВП). Формы записи. Условия разрешимости ЗВП.
- 8. Графическое решение.
- 9. Функция Лагранжа ЗВП. Седловая точка функции Лагранжа.
- 10. Метод условного градиента.
- **11.** Метод штрафных функций (МШФ). Определение и свойства функций штрафа. Примеры функций штрафа.

Практические задания

1. Решить ЗЛП симплекс методом

$$f = 2X_1 + X_2 - 2X_3 \rightarrow \min$$

$$\begin{cases} X_1 + X_2 - X_3 \ge 8; \\ X_1 - X_2 + 2X_3 \ge 2; \\ -2X_1 - 8X_2 + 3X_3 \ge 1; \\ X_i \ge 0 (i = 1, 2, 3). \end{cases}$$

2. Составить и решить двойственную задачу
2.
$$F = 4x_1 + x_2 \rightarrow max$$
 $\begin{cases} 2x_1 - x_2 \le 12, \\ x_1 + 3x_2 = 13, \\ 2x_1 + 5x_2 \le 11, \\ x_1 \ge 0. \end{cases}$

Критерии оценки:

Компетенции	Характеристика ответа на теоретический вопрос / выполнения практического задания	Количество набранных баллов
	Дан полный, развернутый ответ на поставленный вопрос, показана совокупность осознанных знаний по дисциплине, доказательно раскрыты основные положения вопросов; в ответе прослеживается четкая структура, логическая последовательность, отражающая сущность раскрываемых понятий. Знание по предмету демонстрируется на фоне понимания его в системе данной науки и междисциплинарных связей. Приведены доказательства теорем и выводы формул.	10 б.
ОПК-1	Дан полный, развернутый ответ на поставленный вопрос, показана совокупность осознанных знаний по дисциплине, доказательно раскрыты основные положения вопросов; в ответе прослеживается четкая структура, логическая последовательность, отражающая сущность раскрываемых понятий, теорий. Знание по предмету демонстрируется на фоне понимания его в системе данной науки и междисциплинарных связей. Могут быть допущены недочеты в доказательстве формул и теорем, исправленные студентом самостоятельно в процессе ответа.	96.
	Дан полный, развернутый ответ на поставленный вопрос, показано умение выделить существенные и несущественные признаки, причинно-следственные связи. Ответ четко структурирован, логичен. Может быть допущена одна неточности или незначительная ошибка при доказательстве формул и теорем исправленные студентом с помощью преподавателя.	8 б.
	Дан полный, развернутый ответ на поставленный вопрос, показано умение выделить существенные и несущественные признаки, причинно-следственные связи. Ответ четко структурирован, логичен. Может быть допущены две неточности или незначительные ошибки при доказательстве формул и теорем исправленные студентом с помощью преподавателя.	7 6.
	Дан не полный ответ. Логика и последовательность изложения имеют нарушения. Демонстрирует базовые	6 б.

	знания по предмету. Имеются неточности при	
	доказательстве формул, теорем	
	Дан не полный ответ. Логика и последовательность	
	изложения имеют нарушения. Демонстрирует базовые	5 б.
	знания по предмету . При доказательстве теорем и	
	формул допущены значительные ошибки.	
	Дан не полный ответ. Логика и последовательность	
	изложения имеют нарушения. Допущены ошибки в	
	раскрытии понятий, употреблении терминов. При	4б.
	доказательстве теорем и формул допущены	10.
	значительные ошибки.	
	Допущены ошибки в раскрытии понятий, употреблении	
	терминов. Не приведены доказательства теорем и	3б.
	выводы формул.	
	Студент не осознает связь обсуждаемого вопроса по	
	билету с другими объектами дисциплины. Отсутствуют	26
	выводы, конкретизация и доказательность изложения.	
	Ответ представляет собой разрозненные знания с	
	существенными ошибками по вопросу. Присутствуют	16
	фрагментарность, нелогичность изложения.	10
	Ответ на вопрос полностью отсутствует	
	или	0 б.
	Отказ от ответа	
	Практическое задание выполнено верно,	10 б.
	отсутствуют ошибки различных типов.	-
	Практическое задание выполнено верно,	
	отсутствуют ошибки различных типов. Могут быть	0.5
	допущены недочеты в определении понятий,	9 б.
	исправленные студентом самостоятельно в процессе ответа.	
	Ход решения верен, получен неверный ответ из-за одной	
	вычислительной ошибки, но при этом имеется верная	0.7
	последовательность всех шагов решения	8 б.
	Ход решения верен, получен неверный ответ из-за двух	
	вычислительных ошибок, но при этом имеется верная	7 б
	-	/ 0
ОПК-2	последовательность всех шагов решения. Ход решения верен, получен неверный ответ из-за двух	
	незначительных ошибок различных типов, но при этом	
	имеется верная последовательность всех шагов	6 б.
	решения.	
	Ход решения не верен. Допущена одна значительныая	
	ошибка. Дополнительные и уточняющие вопросы	56
	•	50
	преподавателя приводят к коррекции ответа студента	
	Ход решения не верен. Допущены две значительные	46
	ошибки.Дополнительные и уточняющие вопросы	40
	преподавателя приводят к коррекции ответа студента	
	Ход решения не верен. Допущены три значительные	25
	ошибки.Дополнительные и уточняющие вопросы	36
	преподавателя приводят к коррекции ответа студента	26
	Не верная последовательность всех шагов решения	26

Дополнительные и уточняющие вопросы преподавателя	
приводят к коррекции ответа студента	
Не верная последовательность всех шагов решения	
Дополнительные и уточняющие вопросы преподавателя	16
не приводят к коррекции ответа студента	
Выполнение практического задания отсутствует	0 б.

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«СЕВЕРО-ВОСТОЧНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ М.К. АММОСОВА»

Технический институт (филиал) ФГАОУ ВО «СВФУ» в г. Нерюнгри

КАФЕДРА МАТЕМАТИКИ И ИНФОРМАТИКИ

Практические занятия

Темы практических занятий (6 семестр)

- Тема 1-4. Методы линейного программирования. Симплекс метод.
- Тема 5-7. Методы решения транспортной задачи.
- Тема 8. Методы оптимального управления.

Темы практических занятий (7 семестр)

- Тема 1-4. Оптимизация в условиях полной определённости
- Тема 5-6. Методы принятия решений в условиях неопределённости и риска.
- Тема 1-2. Элементы выпуклого анализа

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«СЕВЕРО-ВОСТОЧНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ М.К. АММОСОВА»

Технический институт (филиал) ФГАОУ ВО «СВФУ» в г. Нерюнгри

КАФЕДРА МАТЕМАТИКИ И ИНФОРМАТИКИ

Тестовый материал

- 1. Целевая функция задач линейного программирования представляет собой
- а) линейную функцию, у которой есть экстремумы;
- b) квадратичную функцию, у которой есть экстремумы;
- с) любую функция, у которой есть экстремумы;
- d) функцию, экстремумы которой необходимо найти;
 - 2. Целевая функция ЗЛП задана на максимум, тогда двойственная ей задача:
 - а) не имеет решений;
 - b) имеет бесконечно много решений;
 - с) задана на минимум;
 - d) так же заданна на максимум;
 - 3. . Математическая ЗЛП имеет вид:

$$F(x_1, x_2) = 2x_1 + 7x_2 \rightarrow max,$$

$$-2x_1 + 3x_2 \le 14,$$

$$x_1 + x_2 \le 8,$$

$$x_1 \ge 0, x_2 \ge 0.$$

4. Двойственной для этой задачи будет:

a)
$$F^*(y_1, y_2)=14y_1+8y_2 \rightarrow min$$
,
 $-2y_1+y_2 \ge 2$,
 $3y_1+y_2 \ge 7$,
 $y_1 \ge 0$, $y_2 \ge 0$.

b)
$$F^*(y_1, y_2)= 2y_1 + 7y_2 \rightarrow min,$$

 $-2y_1 + 3y_2 \ge 14,$
 $y_1 + y_2 \ge 8,$
 $y_1 \le 0, y_2 \le 0.$

c)
$$F^*(y_1, y_2)= 2y_1 + 7y_2 \rightarrow min$$
,
 $-2y_1 + y_2 \ge 2$,
 $3y_1 + y_2 \ge 7$,
 $y_1 \le 0$, $y_2 \le 0$.

d)
$$F^*(y_1, y_2)=14y_1+8y_2 \rightarrow min$$
,
 $-2y_1+3_2 \ge 2$,
 $y_1+y_2 \ge 7$,
 $y_1 \ge 0$, $y_2 \ge 0$.

5. При каком значении В данная транспортная задача является задачей закрытого типа:

10	5	10	В

5	1	2	3	4
20	1	2	4	5
25	7	6	4	3

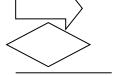
- a) 15
- b) 25
- c) 30
- d) при любом значении В

6. Суть метода северо-западного угла заключается в том, что:

- а) после вычеркивания первого столбца северо-западным элементом будет является элемент х21
- ы) Заполнение опорного плана начинается с клетки х11
- с) Заполнение опорного плана начинается с клетки имеющей минимальный тариф
- d) Заполнение опорного плана начинается с клетки имеющей максимальный тариф

7. Целевой функцией ЗЛП может являться функция:

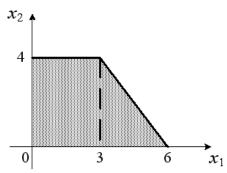
- a) $F=5x_1+3x_2+x_3 \to min$
- b) $F = \sqrt{3x_1^2 + 4x_2^2} \rightarrow min$
- c) $F = 5x_1^2 5x_2 \rightarrow max$.
- d) $F=4x_2 + \sqrt{3x_1} \rightarrow max$


8. Системой ограничений ЗЛП может являться система:

- a) $\begin{cases} x_1 2x_2 \ge 3, \\ 2x_1 + x_2 \le 0. \end{cases}$
- b) $\begin{cases} x_1^2 + x_2^2 \ge 3, \\ x_1 x_2 \le 2. \end{cases}$
- c) $\begin{cases} \sqrt{x_1} + 5x_2 = 4, \\ x_1 + x_2^2 \le 6. \end{cases}$ d) $\begin{cases} x_2^3 2x_1 = 4, \\ x_1^2 x_2^2 \ge 4. \end{cases}$

9. Область допустимых решений ЗЛП не может иметь вид:

a)



d)

c)

10. Область допустимых решений ЗЛП представлена на рисунке:

11. Максимальное значение функции F(x1, x2) = x1 + 5x2 равно...

- a) 23
- b) 20
- c) 27
- d) 6

12. Для разрешимости транспортной задачи необходимо и достаточно, чтобы она была сбалансированной.

- а) Верно
- b) неверно

13. При решении ЗЛП получена симплекс-таблица,

Исходя из данной симплекс-таблицы, опорным является план:

В	x_1	x_2	\mathcal{X}_4	b
x_5	- 3	5	3	3
x_3	2	4	-3	8
x_6	2	5	4	6
x_7	4	2	1	2
f	-3	4	- 5	15

$$X = (0,0,8,0,3,2,6)$$
.

$$X = (0,0,3,8,0,6,2)$$
.

$$X = (0,0,3,0,8,6,2)$$
.

$$X = (0,0,8,0,3,6,2)$$
.

1. При решении ЗЛП получена симплекс-таблица,

В	x_1	x_2	X_4	b
x_5	-3	3	3	3
x_3	2	-1	-3	8
x_6	2	5	2	6
x_7	1	2	1	2
f	- 3	4	- 5	15

Если ввести в базис переменную х4, то из базиса будет выведена переменная

- a) X_7
- b) x_6 .
- c) X_3 .
- d) X_5 .
 - 2. Математическая модель ЗЛП имеет вид:

$$F(x_1, x_2) = 6x_1 + 4x_2 \rightarrow max$$

$$0, 1x_1 + 0, 4x_2 \le 1, 8,$$

$$0, 2x_1 + 0, 1x_2 \le 1, 2,$$

$$0, 5x_1 + 0, 3x_2 \le 2, 4,$$

$$x_1 \ge 0, x_2 \ge 0.$$

Этой задаче эквивалентна задача:

a)
$$F(x_1, x_2) = 6x_1 + 4x_2 \rightarrow \max$$

$$x_1 + 4x_2 \le 18$$
,

$$2x_1 + 1x_2 \le 12$$
,

$$5x_1 + 3x_2 \le 24$$
,

$$x_1 \ge 0, x_2 \ge 0.$$

b)
$$F(x_1, x_2) = 6x_1 + 4x_2 \rightarrow \min$$

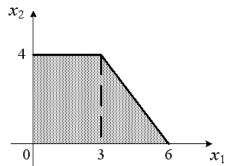
$$x_1 + 4x_2 \le 18$$
,

$$2x_1 + 1x_2 \le 12$$
,

$$5x_1 + 3x_2 \le 24$$
,

$$x_1 \ge 0, x_2 \ge 0.$$

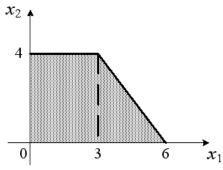
c)
$$F(x_1, x_2) = 60x_1 + 40x_2 \rightarrow max$$


$$x_1 + 4x_2 \le 18$$
,

$$2x_1 + 1x_2 \le 12$$
,

$$5x_1 + 3x_2 \le 24$$
,

$$x_1 \ge 0, x_2 \ge 0.$$


3. Область допустимых решений ЗЛП имеет вид:

Тогда максимальное значение функции $F(x_1, x_2) = x_1 + 3x_2$ равно...

- a) 18
- b) 6
- c) 15
- d) 27

4. Область допустимых решений ЗЛП представлена на рисунке:

Максимальное значение функции $F(x_1, x_2) = 2x_1 + 2x_2$ равно...

- b) 12
- c) 14
- d) 16
- e) 20

18. Максимальное значение целевой функции $F(x_1, x_2) = 5x_1 + 2x_2$ при ограничениях:

 $x_1 + x_2 \le 6$, $x_1 \le 4$, $x_1 \ge 0$, $x_2 \ge 0$, равно ...

- b) 18
- c) 26
- d) 12
- 19. Предприятие реализует изделия двух видов. На изготовление изделия вида А расходуется 2 кг сырья, на изготовление изделия B-1 кг сырья. Всего имеется 50 кг сырья. Необходимо составить план производства, обеспечивающий получение максимальной прибыли, если стоимость реализации одного изделия вида А составляет 4 д.е., вида В - 2 у.е., при этом изделий вида А требуется изготовить не более 30, а вида В – не более 20.

Целевой функцией данной задачи является функция ...

- a) $F(x_1,x_2)=4x_1+2x_2 \to max$
- b) $F(x_1,x_2)=30x_1+30x_2 \to max$
- c) $F(x_1,x_2)=2x_1+x_2 \to max$
- d) $F(x_1,x_2)=60 2x_1 x_2 \rightarrow min$
- 20. На базе A_1 имеется 100 единиц товара, на базе A_2 170 единиц товара. С баз, весь товар нужно перевезти в три магазина в количестве 100, 30 и 140 единиц соответственно. Известна матрица тарифов. Необходимо спланировать перевозки так, чтобы их стоимость была минимальной.

Данная задача является ...

- а) транспортной задачей
- b) задачей динамического программирования
- с) задачей коммивояжера
- d) задачей о назначениях
- 21. В пунктах А₁ и А₂ имеется соответственно 60 и 160 единиц товара. Весь товар нужно перевезти в три пункта в количестве 80, 70 и 70 единиц соответственно.

Матрица тарифов имеет вид: $C = \begin{pmatrix} 4 & 6 & 8 \\ 5 & 8 & 7 \end{pmatrix}$. Опорным планом данной задачи

является план:

a)
$$X = \begin{pmatrix} 60 & 0 & 0 \\ 20 & 70 & 70 \end{pmatrix}$$
;

b)
$$X = \begin{pmatrix} 40 & 20 & 0 \\ 40 & 50 & 70 \end{pmatrix}$$

$$X = \begin{pmatrix} 20 & 20 & 20 \\ 60 & 50 & 50 \end{pmatrix}$$
c)
$$X = \begin{pmatrix} 30 & 20 & 10 \\ 50 & 50 & 60 \end{pmatrix}$$

d)
$$X = \begin{pmatrix} 30 & 20 & 10 \\ 50 & 50 & 60 \end{pmatrix}$$

22. На базах А1 и А2 имеется соответственно 120 и 160 единиц товара. Весь товар нужно перевезти трем потребителям в количестве 80, 70 и 70 единиц соответственно.

Известна матрица тарифов: $C = \begin{pmatrix} 1 & 6 & 8 \\ 5 & 1 & 7 \end{pmatrix}$.

Целевая функция имеет вид:

- a) $F=x_{11}+6x_{12}+8x_{13}+5x_{21}+x_{22}+7x_{23} \rightarrow min$
- b) $F = x_{11}^4 + x_{12}^6 + x_{12}^8 + x_{21}^5 + x_{22}^8 + x_{23}^7 \rightarrow min$
- c) $F=80x_1+70x_2+70x_3-120-160 \rightarrow min$
- d) $F=120x_1+160x_2-80x_3-70x_4-705 \rightarrow min$

24. Найти значения а и b при которых транспортная задача является закрытой

= 11 11W11111 911W 10111111 W 11				
	30	100+b		
20	3	9		
30+a	4	1		
100	6	8		

- a) a=60, b=80
- b) a=60, b=85
- c) a=60, b=70
- d) a=60, b=75

25. Данная транспортная задача является...

, ,	30	100
20	3	9
30	4	1
100	6	8

- а) открытой
- b) закрытой
- с) невозможно определить
- d) это не транспортная задача

27. Для решения следующей транспортной задачи

	50	90
40	4	9
30	5	1
70	6	8

необходимо ввести...

- а) фиктивного поставщика;
- b) фиктивного потребителя.
- с) ничего не нужно вводить;
- d) фиктивного поставщика и фиктивного потребителя.

29. Среди данных транспортных задач закрытыми являются...

1.

Мощности поставщиков	Мощности потребителей			
	22	34	41	20
30	10	7	6	8
48	5	6	5	4
38	8	7	6	7

2.

Мощности	Мощности потребителей			
поставщиков				
	25	30	41	20
30	10	7	6	8
48	5	6	5	4
38	8	7	6	7

Мощности поставщиков	Мощности потребителей			
	26	34	41	20
31	10	7	6	8
48	5	6	5	4
39	8	7	6	7

3.

4.

Мощности	Мощности потребителей			
поставщиков				
	26	34	41	20
31	10	7	6	8
48	5	6	5	4
39	8	7	6	7

- а) 1 и 3
- b) 2
- с) 2и3
- d) 1

30. Первоначальный опорный план транспортной задачи можно составить методом двойного предпочтения

- а) Верно
- b) Неверно

31. Первоначальный опорный план транспортной задачи можно составить используя метод потенциалов

- а) Верно
- b) Неверно

31. Если ЗЛП имеет оптимальный план, то двойственная ей задача

- а) То же имеет оптимальный план;
- b) не имеет оптимального плана;
- с) не имеет допустимых решений;
- d) не возможно определить;

32. Если ЗЛП имеет оптимальный план, то двойственная ей задача так же имеет оптимальный план, но значения целевых функций при их оптимальных планах не равны между собой.

- а) Верно
- b) Неверно

33. Если целевая функция одной из пары двойственных задач не ограничена (для задачи на максимум – сверху, для задачи на минимум - снизу), то

- а) Целевая функция другой задачи также не ограничена
- b) Вторая задача не имеет допустимых планов
- с) Вторая задача имеет допустимые планы, но не имеет оптимального плана

34. Для решения транспортной задачи применяется...

а) метод двойного предпочтения

- b) метод потенциалов
- с) метод северо-западного угла
- d) метод Гаусса

35. В системе ограничений стандартной задачи линейного программирования могут присутствовать и уравнения, и неравенства

- а) верно
- b) неверно

36. В системе ограничений канонической задачи линейного программирования могут присутствовать и уравнения, и неравенства

- а) верно
- b) неверно
- 37. Данная ЗЛП представлена в стандартной форме

$$F(x1, x2)= 2x1 + 7x2 \rightarrow max, \\ -2x1 + 3x2 \le 14, \\ x1 + x2 \le 8, \\ x1 \ge 0, x2 \ge 0.$$

- а) верно
- b) неверно
- 38. Для записи задачи в канонической форме ...

$$F(x_1, x_2) = x_1 + 7x_2 \rightarrow max,$$

$$-2x_1 + x_2 \le 14,$$

$$4x_1 + x_2 \le 8,$$

$$x_1 \ge 0, x_2 \ge 0.$$

- а) необходимо ввести две дополнительных неотрицательных переменных
- b) необходимо ввести две дополнительных переменных: неотрицательную и отрицательную.
- с) необходимо ввести три дополнительных переменных.
- d) эта задача уже представленная в канонической форме.

39. Для записи задачи в канонической форме необходимо ...

$$F(x_1, x_2) = 6x_1 + 3x_2 \rightarrow max, 3x_1 + 3x_2 \le 14, -x_1 + x_2 \le 8, 2x_1 + x_2 \ge 10, x_1 \ge 0, x_2 \ge 0.$$

- а) ввести одну дополнительную переменную
- b) ввести две дополнительных переменных
- с) ввести три дополнительных переменных
- d) ввести пять дополнительных переменных

40. Для записи задачи в канонической форме необходимо ...

$$F(x_1, x_2) = 2x_1 + 7x_2 \rightarrow max,$$

$$x_1 + x_2 = 14,$$

$$x_1 + 2 x_2 \le 8,$$

$$2x_1 + x_2 \ge 10,$$

$$x_1 \ge 0, x_2 \ge 0.$$

- а) ввести две дополнительных переменных: неотрицательную и отрицательную
- b) ввести две дополнительных неотрицательных переменных
- с) ввести три дополнительных неотрицательных переменных
- d) данная задача представлена в канонической форме

41. Транспортная задача - это ...

- а) математическая задача линейного программирования специального вида о поиске оптимального распределения однородных объектов с минимизацией затрат на перемещение.
- b) математическая задача нелинейного программирования специального вида о поиске оптимального распределения неоднородных объектов с минимизацией затрат на перемещение.
- с) математическая задача дробно-линейного программирования специального вида о поиске оптимального распределения однородных объектов с минимизацией затрат на перемещение.

42. В транспортной задаче предполагается перевозка однородных объектов:

Верно неверно

- 3. Если в транспортной задаче суммарные запасы больше суммарных потребностей, то необходимо:
 - а) добавить фиктивного поставщика
 - b) добавить фиктивного потребителя
 - с) уменьшить запасы поставщиков
 - d) уменьшить запасы потребителей

43.Метод построения начального опорного плана, при котором первой выбирается клетка с наименьшей стоимостью, называется:

- а) методом северо-западного угла
- b) методом минимального элемента
- с) метод потенциалов
- d) метод двойного предпочтения

44. Модель транспортной задачи – это:

- а) модель сетевого планирования
- b) модель динамического программирования
- с) модель задачи линейного программирования
- d) нет правильного ответа

45. При определении опорного плана транспортной задачи методом Фогеля находят:

- а) разность по всем столбцам и по всем строкам между двумя записанными в них минимальными тарифами
- b) разность по всем столбцам между двумя записанными в них минимальными тарифами
- c) разность по всем строкам между двумя записанными в них минимальными тарифами

46. Выберите лишний метод из перечисленных:

- а. Метод «северо-западного угла»
- b. Метол Фогеля
- с. Метол потенциалов
- d. Метод минимального тарифа

47. Транспортная задача имеет решение, если:

- а) суммарный запас груза всех поставщиков превышает суммарный спрос потребителей
- b) суммарный запас груза всех поставщиков равен суммарному спросу всех потребителей

- с) суммарный запас груза всех поставщиков меньше суммарного спроса потребителей
- 48. При решении транспортной задачи требуется составить план перевозки продукции от поставщиков потребителям,
 - а) максимизирующий суммарную стоимость перевозок
 - b) минимизирующий суммарную стоимость перевозок
 - с) максимизирующий количество перевозимого груза
 - d) минимизирующий количество перевозимого груза
- 50. Для решения открытой транспортной задачи необходимо:
 - а) составить опорный план любым из методов
 - b) преобразовать данную задачу в закрытую введя фиктивную переменную
 - с) условие разрешимости не выполнено, такую задачу решить нельзя
 - d) условие разрешимости выполнено, эта задача имеет решение
- 51. Система ограничений в закрытой модели транспортной задачи содержит уравнения и неравенства;
 - а) верно
 - b) неверно
- 52. Система ограничений транспортной задачи является
 - а) линейной
 - b) квадратической
 - с) кубической
 - d) любой
- 53. Модель транспортной задачи называют закрытой, если суммарный объем груза, имеющегося у поставщиков, равен суммарному спросу потребителей.
- а) верно
- b) неверно
- 54. Какая из данных задач представлена в канонической форме:
 - a. $F(x_1, x_2) = 2x_1 + 7x_2 \rightarrow max$,

$$x_1 + x_2 = 14$$
,

$$x_1 + 2 x_2 = 8$$
,

$$2x_1 + x_2 = 10$$
,

$$x_1 \ge 0, x_2 \ge 0.$$

b. $F(x_1, x_2)=3x_1+7x_2 \rightarrow \min$

$$-x_1 + x_2 \ge 14$$
,

$$x_1 + 2 x_2 = 8$$
,

$$2x_1 + x_2 = 10$$
,

$$x_1 > 0, x_2 > 0.$$

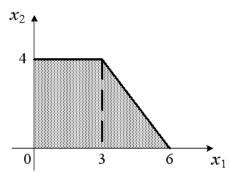
c. $F(x_1, x_2)=5x_1+7x_2 \rightarrow min$,

$$-x_1 + x_2 = 14$$

$$x_1 + 2 x_2 = 8$$
,

$$2x_1 + x_2 \ge 10$$
,

$$x_1 \ge 0, x_2 \ge 0.$$


d. $F(x_1, x_2) = 4x_1 + 7x_2 \rightarrow max$,

$$x_1 + x_2 \le 14$$
,

$$x_1 + 2 x_2 \le 8$$
,

$$2x_1 + x_2 \le 10$$
, $x_1 \ge 0$, $x_2 \ge 0$.

4. Область допустимых решений ЗЛП представлена на рисунке:

Тогда минимальное значение функции $F(x_1, x_2) = 2x_1 - 2x_2$ равно...

- a) -8
- b) -12
- c) 2
- d) 0

26. Транспортная задача

	 250	100
20	1	9
30	4	3
300	7	8

является...

- а) закрытой
- b) это не транспортная задача
- с) открытой
- d) невозможно определить

28. Для решения следующей транспортной задачи

	40	140
20	3	9
30	4	1
80	6	8

необходимо ввести...

- а) фиктивного поставщика;
- b) фиктивного потребителя.
- с) ничего не нужно вводить;
- d) фиктивного поставщика и фиктивного потребителя.

При нахождении потенциалов для невырожденного плана перевозок система уравнений транспортной задачи обладает следующим свойством:

- а) число уравнений равно числу переменных;
- b) число уравнений может быть любым
- с) число уравнений больше числа переменных;
- d) число уравнений меньше числа переменных

Для разрешимости транспортной задачи необходимо, чтобы количество базисных клеток было равно:

a) n+m

- b) n+m+1
- c) n+m-1
- d) любому числу

При вычислении потенциалов система уравнений определяется по правилу:

- а) для каждой небазисной клетки сумма потенциалов равна стоимости перевозки;
- b) для каждой базисной клетки сумма потенциалов равна стоимости перевозки;
- с) для каждой небазисной клетки произведение потенциалов равно стоимости перевозки;
- d) для каждой базисной клетки произведение потенциалов равно стоимости перевозки;

При нахождении потенциалов полученная система уравнений имеет одно решение

- с) верно
- d) неверно

Шкала оценивания:

Процент выполненных тестовых заданий	Количество набранных баллов
91% - 100%	Отлично20 баллов
81% - 90%	Отлично18-19баллов
71% - 80%	Хорошо17-18баллов
61% - 70%	Удовлетворительно 12-16 баллов
51% - 60%	Удовлетворительно10-11 баллов
<50%	Неудовлетворительно баллов