Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Рукович Александр Владупинистерство науки и высшего образования Российской Федерации Должность: Директор Федеральное государственное автоном ное образовательное учреждение высшего Дата подписания: 08.07.7024 11:24:03

Уникальный программный ключ: образования f45eb7c44954caac05ea7d4GFBEPO-BOCTQUHЬІЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ М.К. AMMOCOBA»

Технический институт (филиал) ФГАОУ ВО «СВФУ» в г. Нерюнгри

Кафедра электропривода и автоматизации производственных процессов

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине (модулю)

Б1.О.25 Промышленная электроника

Направление подготовки 13.03.02 «Электроэнергетика и электротехника» профиль «Электропривод и автоматика» Квалификация (степень) выпускника — бакалавр Форма обучения — заочная Группа 3-Б-ЭП-24(5)

УТВЕРЖДЕНО на заседании обеспечивающей кафедры электропривода и автоматизации
производственных процессов
« <u>10</u> » <u>мая</u> 20 <u>24</u> г. протокол № <u>14</u>
и.о. зав. кафедрой ЭПиАПП
А.В.Рукович
УТВЕРЖДЕНО на заседании выпускающей кафедры электропривода и автоматизации производственных процессов « <u>29</u> » апреля 20 <u>24</u> г. протокол № <u>04</u>
(<u>2) // anpeni 20 24</u> 1. hpotokon n <u>2 04</u>
«_10_»_мая 20 <u>24</u> г. протокол №_14 и.о. зав. кафедрой ЭПиАПП
« <u>10</u> » <u>мая</u> 20 <u>24</u> Г.
Эксперт:
Рукович А.В., доцент кафедры ЭПиАПП
Ф.И.О., должность, организация, подпись
Эксперт:
·,

Составитель:

Шабо К.Я., доцент кафедры ЭПиАПП ТИ (ф) СВФУ

Паспорт фонда оценочных средств по дисциплине (модулю) Б1.О.25 Промышленная электроника

№	Контролируемые разделы (темы)	Код контролируемой компетенции (или	Наименование оценочного средства
1	Основы теории	ее части) ОПК-4, ПК-4	Зачет, лабораторные работы
	полупроводников)	за тет, лаоораторные расоты
2	Элементная база полупроводниковой техники	ОПК-4, ПК-4	Зачет, лабораторные работы.
3	Основные полупроводниковые элементы	ОПК-4, ПК-4	Зачет, практические занятия, лабораторные работы.
4	Основы цифровой электроники	ОПК-4, ПК-4	Зачет, лабораторные работы
5	Источники тока	ОПК-4, ПК-4	Зачет, лабораторные работы
6	Операционные усилители	ОПК-4, ПК-4	Зачет, практические занятия, лабораторные работы.

 $^{^*}$ Наименование темы (раздела) указывается в соответствии с рабочей программой дисциплины.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Технический институт (филиал)

федерального государственного автономного образовательного учреждения высшего образования «Северо-Восточный федеральный университет имени М.К. Аммосова»

в г. Нерюнгри

Кафедра электропривода и автоматизации производственных процессов

Работа на лабораторном занятии по дисциплине Б1.О.25 Промышленная электроника

Работа на лабораторном занятии

В период освоения дисциплины студенты посещают лекционные занятия, самостоятельно изучают дополнительный теоретический материал к лабораторным занятиям. Критериями оценки работы на лабораторных занятиях является: владение теоретическими положениями по теме, выполнение лабораторных работ. Самостоятельная работа студентов включает проработку методических рекомендаций и дополнительной учебной литературы в соответствии с планом занятия; выполнение лабораторных работ. Основной формой проверки СРС является проведение лабораторных работ и письменное написание полученных результатов согласно методическим рекомендациям.

Содержание дисциплины, разработка лабораторных занятий с указанием основной и дополнительной литературы к каждому занятию, а также методические рекомендации к выполнению лабораторных заданий, образцы их выполнения представлены в Методических указаниях по курсу «Основы электроники». Нерюнгри, 2009 г.

Критериями для оценки результатов внеаудиторной самостоятельной работы студента являются:

- уровень освоения учебного материала;
- умение использовать теоретические знания при выполнении лабораторных работ;
 - правильность выполнения лабораторных работ;
 - обоснованность и четкость изложения результатов.

Максимальный балл, который студент может набрать на лабораторном занятии, - 60 баллов.

Темы лабораторных работ:

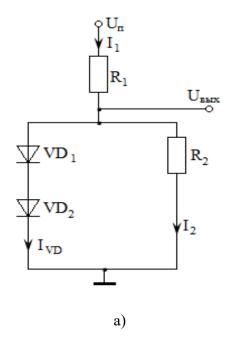
- 1. Техника безопасности, исследование рабочего стенда.
- 2. Исследование схем выпрямления на базе полупроводниковых диодов.
- 3. Исследование ключевого режима транзисторов. Исследование ключевого режима транзисторов
- 4. Экспериментальное определение параметров элементов цепей постоянного тока.
- 5. Экспериментальное определение параметров элементов цепей переменного тока
- 6. Электрическая цепь переменного тока с параллельным и последовательным соединением элементов

Практическая работа

Практическая работа №1: «Расчет параметров электронных схем».

Задача: По исходным данным, приведенным в таблице 1, определить падение напряжения на сопротивлении нагрузки U_R , ток в цепи I, сопротивление диода постоянному току R_0 и дифференциальное сопротивление $r_{\partial u\phi}$. Цепь состоит из источника

напряжения E, резистора R и диода VD. Рабочая точка находится на прямой ветви диода. Привести схему.


Таблица 1

Исходные данные	Последняя цифра шифра									
Исходные данные	1	2	3	4	5	6	7	8	9	0
E, B	5	4	10	3	6	6	3	10	4	5
<i>R, кОм</i>	1	2	2	0,5	2	1	2	3	2	1,5
	Предпоследняя цифра шифра									
	1	2	3	4	5	6	7	8	9	0
Обратный ток насыщения диода I_0 , $m \kappa A$	25	5	30	10	10	5	30	5	25	20
Температура <i>T</i> , <i>K</i>	300	293	293	300	298	300	300	300	298	293

Практическая работа №2: «Расчет параметров и выбор шунтирующих резисторов и полупроводниковых диодов».

Задание 1. Рассчитайте простейшую схему без фильтра для выпрямления синусоидального напряжения с действующим значением U=500 В, используя диоды КД109Б. Выберите подходящие номинальные сопротивления шунтирующих резисторов. Начертите схему.

Задание 2. В схеме, изображенной на рисунке 1, а, U_n =6 В, R_1 =2кОм, R_2 =1кОм. Определите токи через диоды, напряжение на диодах, напряжение $U_{\text{вых}}$ и сопротивление постоянному току R_0 . Вольтамперная характеристика диодов приведена на рисунке 1, б.

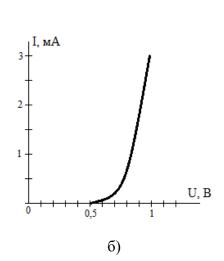


Рисунок 1

Общие положения и требования по выполнению практической работы

Выполнение практических работ предусмотрено учебным планом подготовки и имеет следующие цели:

- а) закрепление и углубление теоретических знаний, полученных на предусмотренных учебным планом видах занятий;
- б) формирование умений самостоятельно решать задачи по расчету показателей объекта изучения дисциплины с обоснованием применяемых при этом теоретических положений и анализом полученных результатов;
- в) формирование инженерного мышления, необходимого для исследования существующих и перспективных систем электроэнергетики и электротехники.

Критерии оценки практической работы

40 баллов выставляется за 100% выполненую работу, в которой отсутствуют фактические ошибки. 35 баллов - за работу, в которой допущена 1 фактическая ошибка. 30 баллов – за работу, в которой допущены 2 ошибки. 30 баллов – за работу с 3 ошибками. 25 баллов – за работу с 4 ошибками. 20 баллов – за работу с 5 ошибками. Работа, выполненная более чем с 6 ошибками, не оценивается.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Технический институт (филиал)

федерального государственного автономного образовательного учреждения высшего образования «Северо-Восточный федеральный университет имени М.К. Аммосова» в г. Нерюнгри

Кафедра электропривода и автоматизации производственных процессов

Вопросы к зачету

- 1. Основные силовые полупроводниковые приборы применяются в силовой электронике, и какие из них применяются в неуправляемых и управляемых преобразователях.
- 2. Определение выпрямительного преобразователя. Классификация.
- 3. Область применения выпрямительных преобразований.
- 4. Что такое процесс коммутации вентилей в выпрямителях.
- 5. Как влияет процесс коммутации на величину выпрямленного напряжения на вид регулировочных характеристик выпрямителя.
- 6. Поясните смысл коэффициента мощности выпрямителя и как он определяется.
- 7. Генератор постоянного тока и его характеристики.
- 8. Тиристорные регуляторы напряжения переменного тока
- 9. Распределители импульсов
- 10. Микросхемы памяти.
- 11. Электрофизические свойства полупроводника
- 12. Что такое электронно-дырочный переход в равновесном состоянии, и какие виды переходов бывают
- 13. Что такое электронно-дырочный переход в не равновесном состоянии
- 14. ВАХ р-п перехода
- 15. Емкость р-п перехода
- 16. Перечислите десять видов полупроводниковых диодов и объясните принцип работы трех
- 17. Основные статические и динамические параметры диодов
- 18. Выпрямительные диоды. Виды и область применения.
- 19. Биполярные транзисторы. Устройство и принцип действия
- 20. Полевые транзисторы с управляющим входом. Устройство и принцип действия
- 21. Схемы включения и принцип работы транзисторов
- 22. Статические характеристики биполярного транзистора
- 23. Основные характеристики полевого транзистора
- 24. Тиристоры. Устройство и виды. Условные графические обозначения тиристоров на электрических схемах
- 25. Основные понятия микроэлектроники и классификация ИМС по конструктивнотехнологическим признакам
- 26. Монолитные и гибридные ИМС. Устройство и виды
- 27. Основные характеристики и параметры усилителей
- 28. Амплитудно-частотные характеристики усилителей
- 29. Обратная связь в усилителях. Классификация
- 30. Полевые транзисторы МДП-структуры