Документ подписан простой электронной подписью Информация о владельце:

ФИО: Рукович Александр Владимир Министерство науки и высшего образования Российской Федерации Должность: Директор Технический институт (филиал) федерального государственного автономного Дата подписания: 03.06.2025 09:28:57 образовательного учреждения высшего образования 145eb7c44954caac05ea7d4f32eb805cBsp9cBoostopный федеральный университет имени М.К. Аммосова» в т. Нерюнгри

Кафедра экономических, гуманитарных и общеобразовательных дисциплин

Фонд оценочных средств

Б1.О.15 Эконометрика

Направление подготовки — 38.03.01«Экономика» Направленность программы «Экономика предприятия»

Квалификация (степень) выпускника – бакалавр

Форма обучения – очно-заочная Группа ОЗ-Б-ЭК-25 (5)

Нерюнгри – 2025 г.

УТВЕРЖДЕНО	
на заседании выпускающей кафедрь	л ЭГиОД
«02» апреля 2025 г., протокол № 9	
Заведующий кафедрой	Т.А. Ахмедов
«02» апреля 2025 г.	
УТВЕРЖДЕНО	
на заседании обеспечивающей кафедр	оы ЭГиОД
«02» апреля 2025 г., протокол № 9	
Заведующий кафедрой	Т.А. Ахмедов
«02» апреля 2025 г.	
COLII A COD A HO. Oververov	
СОГЛАСОВАНО: Эксперты:	
Ахмедов Т.А., доцент каф.ЭГиОД	
Ф.И.О., должность, организация, подпись	

Составитель

Блайвас Д.М., ст. преподаватель кафедры ЭГиОД

Паспорт фонда оценочных средств

по дисциплине (модулю) Эконометрика

Процесс изучения дисциплины направлен на формирование следующих компетенций:

ОПК-2 - Способен осуществлять сбор, обработку и статистический анализ данных, необходимых для решения поставленных экономических задач.

ОПК-2.2 - Способен выполнять обработку и статистический анализ данных;

ОПК-2.3 - проводит статистический анализ данных, необходимых для решения поставленных экономических задач.

Паспорт фонда оценочных средств по дисциплине Б1.О.15 Эконометрика

.Контролируемые разделы (темы)	Код контролируемой компетенции (или ее части)	Наименование оценочного средства
Введение в эконометрику. Методология		Аттестационная работа
эконометрического исследования.		
Парная линейная и нелинейная регрессия.	ОПК-2	Аттестационная работа
Множественная регрессия.	ОПК-2.2 ОПК-2.3	Аттестационная работа
Системы эконометрических уравнений.		Аттестационная работа
Временные ряды.		Аттестационная работа

Оценочные средства по дисциплине

Задание на выполнение аттестационной работы

Аттестационная работа поверяет теоретические и практические знания студентов по изученным разделам дисциплины и включает в себя тестирование и расчетные работы.

Расчетные задания

Задание 1. Парная регрессия

Имеются данные за 12 месяцев года по району города о рынке вторичного жилья (у – стоимость квартиры (тыс. у.е.), x – размер общей площади (M^2). Данные приведены в таблице.

- 1. Постройте поле корреляции и сформулируйте гипотезу о форме связи.
- 2. Рассчитайте параметры уравнений линейной, степенной, гиперболической парной регрессий.
- 3. Оцените тесноту связи с помощью индексов корреляции и детерминации.
- 4. Рассчитайте средний коэффициент эластичности и дайте сравнительную оценку силы связи фактора с результатом.
- 5. Рассчитайте среднюю ошибку аппроксимации и оцените качество модели.
- 6. С помощью F-статистики Фишера (при $\alpha = 0.05$) оцените надежность уравнения регрессии.
- 7. Рассчитайте прогнозное значение \overline{Y}_{np} , если прогнозное значение фактора увеличивается на 10 % от его среднего значения. Определить доверительный интервал прогноза для $\alpha = 0.01$.

Варианты исходных данных:

№ варианта	1		2	2	3	3	4	4		5	(6	7	7
мес.	y	X	у	X	у	X	у	X	у	X	у	X	у	X
1	22,5	46,0	13,2	37,2	13,2	37,2	22,5	29,0	23,0	37	23,0	22,8	28,8	6,2
2	25,5	54,0	15,9	58,2	15,9	58,2	25,8	36,2	26,8	60	26,8	27,5	36,2	7,2
3	19,2	50,2	16,2	60,8	16,2	60,8	20,8	28,9	28,0	60,9	28,0	34,5	26,9	5,6
4	13,6	43,8	15,4	52,0	15,4	52,0	15,2	32,4	18,4	52,1	18,4	26,4	35,9	6,7
5	25,4	78,6	14,2	44,6	14,2	44,6	25,8	49,7	30,4	40,1	30,4	19,8	49,7	7,4
6	17,8	60,2	11,0	31,2	11,0	31,2	19,4	38,1	20,8	30,4	20,8	17,9	31,2	6,3
7	18,2	30	21,1	26,4	21,1	26,4	18,2	30,0	22,4	43,0	22,4	25,2	26,4	5,9
8	21,0	32,6	13,2	20,7	13,2	20,7	21,0	32,6	21,8	32,1	21,8	20,1	38,3	6,8
9	16,4	27,5	15,4	22,4	15,4	22,4	16,4	27,5	18,5	35,1	18,5	20,7	54,6	10,1
10	23,5	39,0	12,8	35,4	12,8	35,4	23,5	39,0	23,5	32,0	23,5	21,4	47,2	7,3
11	18,8	27,5	14,5	28,4	14,5	28,4	18,8	27,5	16,7	33,0	16,7	19,8	28,4	6,5
12	17,5	31,2	15,1	20,7	15,1	20,7	17,5	31,2	20,4	32,5	20,4	24,5	34,8	8,3

№ варианта	8		Ģ)	10		
мес.	у	X	у	X	y	X	
1	24,7	8,4	35,2	7,6	37,2	7,6	
2	58,1	9,4	54,3	9,3	56,7	9,4	
3	31,3	9,5	41,2	8,5	40,2	9,5	
4	38,3	8,3	44,8	8,1	39,6	8,1	
5	54,6	10,4	44,6	7,4	44,6	7,4	
6	28,5	5,9	49,9	10,4	29,2	6,3	
7	60,3	5,9	36,4	5,9	36,4	5,9	
8	26,7	5,5	36,7	5,5	36,7	5,5	
9	31,7	5,7	32,4	5,7	32,4	5,7	
10	40,3	7,7	35,4	6,8	35,4	6,8	
11	30,1	6,5	48,3	8,1	28,4	6,5	
12	30,7	6,9	27,7	7,3	27,7	7,3	

Задание 2. Множественная регрессия

Имеются данные о деятельности крупнейших компаний в течение 12 отчетных периодов.

Известны – чистый доход (у), оборот капитала, использованный капитал в млрд. у.е.

Задача	1		Задача	2 Задача 3			Задача 4			Задача 5				
Y	\mathbf{x}_1	X2	у	\mathbf{x}_1	X2	у	X_1	X2	у	\mathbf{x}_1	X2	у	\mathbf{x}_1	X_2
22,5	56,2	7,6	22,7	28,8	5,4	19,9	24,7	7,6	22,5	56,2	7,6	23,8	28,8	5,4
25,5	59,3	9,4	25,8	36,2	9,4	25,5	58,1	9,4	25,5	58,1	9,4	25,8	36,2	7,2
19,2	46,3	9,5	20,8	27,5	4,6	19,2	30,6	9,5	19,2	30,6	9,5	20,8	20,6	5,6
16,6	31,4	8,1	15,2	17,3	4,1	20,6	38,3	8,1	20,6	38,3	8,1	22,7	32,4	4,1
25,4	54,6	7,4	25,4	49,7	7,4	25,4	54,6	10,4	25,4	54,6	10,4	25,4	49,7	7,4
17,8	33,2	6,3	19,4	31,2	6,3	17,8	28,5	6,3	17,8	28,5	6,3	20,3	31,2	6,3
18,4	35,9	5,9	18,2	26,4	5,9	28,1	60,3	5,9	18,7	20,4	5,9	18,2	26,4	5,9
21,1	40,3	7,8	21,1	26,7	5,5	21,1	26,7	5,5	21,1	26,7	5,5	24,1	38,3	6,8
19,5	36,3	5,7	16,4	27,5	5,7	19,5	31,7	5,7	19,5	21,5	5,7	27,9	54,6	10,1
23,2	35,4	6,8	24,3	39,4	6,8	23,8	35,4	6,8	23,8	35,4	6,8	26,7	47,2	7,3
16,2	28,4	6,5	23,5	28,4	6,5	16,2	24,8	6,5	16,2	24,8	6,5	23,5	28,4	6,5
17,2	27,7	6,2	18,8	27,7	5,2	17,2	27,7	6,9	17,2	27,7	6,9	18,8	27,7	5,2
Задача	6		Задача	7		Задача 8			Задача 9			Задача 10		
Y	X 1	X2	у	X 1	X_2	у	\mathbf{x}_1	X2	у	X 1	X2	Y	X1	X2
													_	_
23,4	28,8	6,2	20,2	24,7	8,4	20,2	24,7	8,4	22,5	37,2	7,6	22,7	28,8	5,4
23,4 25,8	28,8 36,2	6,2 7,2	20,2 26,2	24,7 58,1	8,4 9,4	20,2 26,6	24,7 58,1	8,4 9,4	22,5 25,5	37,2 56,7	7,6 9,4	22,7 25,8	28,8 36,2	
														5,4
25,8	36,2	7,2	26,2	58,1	9,4	26,6	58,1	9,4	25,5	56,7	9,4	25,8	36,2	5,4 7,2
25,8 20,8	36,2 26,9	7,2 5,6	26,2 28,9	58,1 45,7	9,4 10,3	26,6 18,7	58,1 31,3	9,4 9,5	25,5 19,2	56,7 40,2	9,4 9,5	25,8 20,8	36,2 20,6	5,4 7,2 5,6
25,8 20,8 22,7	36,2 26,9 35,9	7,2 5,6 6,7	26,2 28,9 20,6	58,1 45,7 38,3	9,4 10,3 8,3	26,6 18,7 20,6	58,1 31,3 38,3	9,4 9,5 8,3	25,5 19,2 18,6	56,7 40,2 39,6	9,4 9,5 8,1	25,8 20,8 15,2	36,2 20,6 32,4	5,4 7,2 5,6 4,1
25,8 20,8 22,7 25,4	36,2 26,9 35,9 49,7	7,2 5,6 6,7 7,4	26,2 28,9 20,6 25,4	58,1 45,7 38,3 54,6	9,4 10,3 8,3 10,4	26,6 18,7 20,6 25,4	58,1 31,3 38,3 54,6	9,4 9,5 8,3 10,4	25,5 19,2 18,6 25,4	56,7 40,2 39,6 44,6	9,4 9,5 8,1 7,4	25,8 20,8 15,2 25,4	36,2 20,6 32,4 49,7	5,4 7,2 5,6 4,1 7,4
25,8 20,8 22,7 25,4 20,3	36,2 26,9 35,9 49,7 31,2	7,2 5,6 6,7 7,4 6,3	26,2 28,9 20,6 25,4 37,8 28,1 21,1	58,1 45,7 38,3 54,6 52,7	9,4 10,3 8,3 10,4 11,5 5,9 5,5	26,6 18,7 20,6 25,4 17,8	58,1 31,3 38,3 54,6 28,5	9,4 9,5 8,3 10,4 5,9 5,9 5,5	25,5 19,2 18,6 25,4 17,8	56,7 40,2 39,6 44,6 29,2 36,4 36,7	9,4 9,5 8,1 7,4 6,3	25,8 20,8 15,2 25,4 19,4	36,2 20,6 32,4 49,7 31,2	5,4 7,2 5,6 4,1 7,4 6,3 5,9 5,5
25,8 20,8 22,7 25,4 20,3 18,2	36,2 26,9 35,9 49,7 31,2 26,4	7,2 5,6 6,7 7,4 6,3 5,9	26,2 28,9 20,6 25,4 37,8 28,1	58,1 45,7 38,3 54,6 52,7 60,3	9,4 10,3 8,3 10,4 11,5 5,9	26,6 18,7 20,6 25,4 17,8 28,1	58,1 31,3 38,3 54,6 28,5 60,3	9,4 9,5 8,3 10,4 5,9 5,9	25,5 19,2 18,6 25,4 17,8 18,5	56,7 40,2 39,6 44,6 29,2 36,4	9,4 9,5 8,1 7,4 6,3 5,9	25,8 20,8 15,2 25,4 19,4 18,2	36,2 20,6 32,4 49,7 31,2 26,4	5,4 7,2 5,6 4,1 7,4 6,3 5,9
25,8 20,8 22,7 25,4 20,3 18,2 24,1	36,2 26,9 35,9 49,7 31,2 26,4 38,3	7,2 5,6 6,7 7,4 6,3 5,9 6,8	26,2 28,9 20,6 25,4 37,8 28,1 21,1	58,1 45,7 38,3 54,6 52,7 60,3 26,7	9,4 10,3 8,3 10,4 11,5 5,9 5,5	26,6 18,7 20,6 25,4 17,8 28,1 21,1	58,1 31,3 38,3 54,6 28,5 60,3 26,7	9,4 9,5 8,3 10,4 5,9 5,9 5,5	25,5 19,2 18,6 25,4 17,8 18,5 21,1	56,7 40,2 39,6 44,6 29,2 36,4 36,7	9,4 9,5 8,1 7,4 6,3 5,9 5,5	25,8 20,8 15,2 25,4 19,4 18,2 21,1	36,2 20,6 32,4 49,7 31,2 26,4 26,7	5,4 7,2 5,6 4,1 7,4 6,3 5,9 5,5
25,8 20,8 22,7 25,4 20,3 18,2 24,1 27,9	36,2 26,9 35,9 49,7 31,2 26,4 38,3 54,6	7,2 5,6 6,7 7,4 6,3 5,9 6,8 10,1	26,2 28,9 20,6 25,4 37,8 28,1 21,1 19,5	58,1 45,7 38,3 54,6 52,7 60,3 26,7 31,7	9,4 10,3 8,3 10,4 11,5 5,9 5,5 5,7	26,6 18,7 20,6 25,4 17,8 28,1 21,1 19,5	58,1 31,3 38,3 54,6 28,5 60,3 26,7 31,7	9,4 9,5 8,3 10,4 5,9 5,9 5,5 5,7	25,5 19,2 18,6 25,4 17,8 18,5 21,1 19,5	56,7 40,2 39,6 44,6 29,2 36,4 36,7 32,4	9,4 9,5 8,1 7,4 6,3 5,9 5,5 5,7	25,8 20,8 15,2 25,4 19,4 18,2 21,1 16,4	36,2 20,6 32,4 49,7 31,2 26,4 26,7 27,5	5,4 7,2 5,6 4,1 7,4 6,3 5,9 5,5 5,7

Задание:

- 1. Рассчитайте параметры линейного уравнения множественной регрессии.
- 2. Оцените статистическую значимость параметров и уравнения регрессии в целом с помощью критериев Фишера ($\alpha = 0.01$).
- 3. Дайте оценку силы связи факторов с результатом с помощью средних коэффициентов эластичности.
 - 4. Рассчитайте среднюю ошибку аппроксимации. Сделайте вывод.
 - 5. Рассчитать частные статистики Фишера, сделать соответствующие выводы.
 - 6. Составьте матрицы парных и частных коэффициентов корреляции.
 - 7. Выводы оформите в виде аналитической записки.

Задание 3. Системы эконометрических уравнений

- 1. Используя необходимое и достаточное условие идентификации, определить, идентифицировано ли каждое уравнение модели.
- 2. Определить тип модели.
- 3. Определить метод оценки параметров модели.
- 4. Опишите последовательность действий при использовании указанного метода. Вариант 1.

Гипотетическая модель экономики:

 $C_t = a_1 + b_{11}Y_t + b_{12}Y_t + E_1$ $J_t \!\!=\!\! a_2 \!\!+\! b_{21} Y_{t\text{-}1} \!\!+\!\! E_2$ $T_t = a_3 + b_{31}Y_t + + E_3$ $Y_t = C_t + Y_t + G_t$ где C – совокупное потребление в период t; Y – совокупный доход в период t; J – инвестиции в период t; T – налоги в период t; G – государственные доходы в период t. Вариант 2. Модель спроса и предложения на деньги: $R_t = a_1 + b_{11}M_t + b_{12}Y_t + E_1$ $Y_t = a_2 + b_{21}R_t + E_2$ где R – процентные ставки в период t; Y – $BB\Pi$ в период t; M - денежная масса в период tВариант 3. Макроэкономическая модель: $C_t = a_1 + b_{12}Y_t + b_{13} T_t + E_1$ $I_t = a_2 + b_{21}Y_t + b_{24}K_{t-1} + E_2$ $Y_t = C_t + I_t$ где C – потребление; I – инвестиции; Y – доход; T – налоги; K= запас капитала Вариант 4. Модель денежного и товарного рынков: R_t =a₁+b₁₂ Y_t +b₁₄ M_t +E₁; Y_t =a₂+b₂₁ R_t +b₂₃ I_t +b₂₅ G_t +E₂; I_t =a₃+b₃₁ R_t +E₃, где R – процентные ставки; Y – реальный ВВП; М – денежная масса; І – внутренние инвестиции; G- реальные государственные расходы Вариант 5 Модель денежного рынка: $R_t \!\!=\!\! a_1 \!\!+\! b_{11} M_t \!\!+\! b_{12} \, Y_t \!\!+\! E_1; \, Y_t \!\!=\!\! a_2 \!\!+\! b_{21} R_t \!\!+\! b_{22} \, I_t \!\!+\! E_2; \, I_t \!\!=\!\! a_3 \!\!+\! b_{33} R_t \!\!+\! E_t; \, \text{где } R - \text{процентные ставки; } Y - BB\Pi; \, M - BB\Pi;$ денежная масса; І – внутренние инвестиции. Вариант 6 Модель имеет вид: $Y_t = a_1 + b_{12}Y_2 + E_1$ $Y_t = a_2 + b_{21}Y_1 + C_{21}X_1 + E_2$ $Y_3 = Y_2 + X_2$ Вариант 7 Модель имеет вид: $Y_1 = a_1 + b_{11}x_1 + b_{12}x_2 + C_{12}Y_{12} + E_1$ $Y_2 = a_2 + b_{22}x_2 + C_{21}Y_1 + E_2$ $Y_3 = a_3 + b_{31}x_1 + b_{33}x_3 + E_3$ Вариант 8 Модель имеет вид: $Y_1=a_1+b_{11}x_1+b_{13}x_3+C_{12}Y_2+E_1$ $Y_2 = a_2 + b_{22}x_2 + C_{21}Y_1 + E_2$ $Y_3 = a_3 + b_{32}x_2 + b_{33}x_3 + E_3$ Вариант 9

Модель имеет вид:

 $Y_1=b_{12}y_2+a_{11} x_1+a_{12}x_2+E_1$ $Y_2=b_{21}y_1+b_{23} Y_3+a_{22}x_2+E_2$ $Y_3=b_{31}y_1+a_{31} x_1+a_{33}x_3+E_3$

Вариант 10

Модель имеет вид:

 $Y_1 = b_{12}y_2 + a_{11} x_1 + a_{12}x_2 + E_1$

 $Y_2 = b_{21}y_1 + a_{22} x_2 + a_{23}x_3 + E_2$

 $Y_3 = b_{31}y_1 + a_{33} x_3 + E_3$

Задание 4. Временные ряды

Даны показатели уровня регистрируемой безработицы в Нерюнгринском районе (Y_t) за последние 12 лет (2001-2012 гг.)

- 1. Рассчитать значения коэффициентов автокорреляции 1-ого, 2-ого, 3-его порядков.
- 2. Сделать вывод о структуре ряда

3. Построить модель ряда и осуществить прогноз данного показателя на 2013 год.

Зада	ча 1	Зада	ча 2	Зада	ча 3	Зада	ча 4	Зада	ча 5	Зада	ча б
t	Y_t										
1	2,8	1	2,9	1	2,4	1	2,8	1	2,9	1	2,4
2	2,6	2	2,6	2	2,6	2	2,6	2	2,6	2	2,6
3	2,9	3	2,9	3	2,9	3	2,9	3	3,3	3	2,9
4	3,7	4	3,1	4	3,4	4	3,7	4	3,1	4	3,4
5	3,2	5	3,2	5	3,2	5	3,2	5	3,2	5	3,2
6	3,6	6	3,6	6	3,6	6	3,6	6	3,6	6	3,6
7	3,5	7	3,5	7	3,5	7	3,5	7	3,5	7	3,5
8	3,3	8	3,5	8	3,3	8	3,3	8	3,5	8	3,3
9	3,8	9	3,7	9	3,6	9	3,8	9	3,7	9	3,6
10	3,4	10	3,4	10	3,7	10	3,4	10	3,4	10	3,7
11	3,5	11	3,2	11	3,5	11	3,1	11	2,7	11	2,9
12	3,3	12	3,1	12	3,8	12	3,7	12	3,6	12	3,4

Зада	ча 7	Зада	ча 8	Зада	іча 9	Зада	ча 10
t	Y_t	t	Y_t	t	Y_t	t	Y_t
1	2,8	1	3,4	1	2,7	1	3,1
2	2,6	2	2,6	2	2,6	2	2,6
3	2,9	3	3,3	3	2,9	3	2,9
4	3,7	4	3,1	4	3,4	4	3,7
5	3,2	5	3,2	5	3,2	5	3,2
6	3,6	6	3,6	6	3,6	6	3,6
7	3,6	7	3,5	7	3,5	7	3,6
8	3,3	8	3,5	8	3,3	8	3,3
9	3,8	9	3,7	9	3,6	9	3,8
10	3,4	10	3,4	10	3,7	10	3,4
11	3,1	11	4	11	2,9	11	3,1
12	3,7	12	3,6	12	3,4	12	3,7

Оформление расчетных заданий

Пояснительная записка контрольной работы с результатами расчетов оформляется на листах формата А4 шрифтом Times 14, межстрочный интервал 1,5. Заголовки разделов выделяются полужирным шрифтом. Обязательно наличие титульного листа, содержания, введения, заключения и списка использованной литературы.

Тесты аттестационной работы

- 1. Наиболее наглядным видом выбора уравнения парной регрессии является:
- а) аналитический;
- в) экспериментальный (табличный).
- 2. Рассчитывать параметры парной линейной регрессии можно, если у нас есть:
- а) не менее 5 наблюдений;
- б) не менее 7 наблюдений;
- в) не менее 10 наблюдений.
- 3. Суть метода наименьших квадратов состоит в:
- а) минимизации суммы остаточных величин;
- б) минимизации дисперсии результативного признака;
- в) минимизации суммы квадратов остаточных величин.
- 4. Коэффициент линейного парного уравнения регрессии:
- а) показывает среднее изменение результата с изменением фактора на
- б) оценивает статистическую значимость уравнения регрессии;
- в) показывает, на сколько процентов изменится в среднем результат, если фактор изменится на 1%.
- 5. На основании наблюдений за 50 семьями построено уравнение регрессии $\hat{y}=284,56+0,672x$, где y потребление, x -

доход. Соответствуют ли знаки и значения коэффициентов регрессии теоретическим представлениям?

- а) да; б) нет; в) ничего определенного сказать нельзя.
- 6. Суть коэффициента детерминации r_{xy}^2 состоит в следующем:
- а) оценивает качество модели из относительных отклонений по каждом у наблюдению;
- б) характеризует долю дисперсии результативного признака у, объясняемую регрессией, в общей дисперсии результативного признака;
- в) характеризует долю дисперсии у, вызванную влиянием не учтенных в модели факторов.
- 7. Качество модели из относительных отклонений по каждому наблюдению оценивает:
- а) коэффициент детерминации r_{xy}^2 ;
- б) F-критерий Фишера;
- в) средняя ошибка аппроксимации А.
- 8. Значимость уравнения регрессии в целом оценивает:
- а) F-критерий Фишера;
- б) t-критерий Стьюдента;
- в) коэффициент детерминации r_{xy}^2 .
- 9. Классический метод к оцениванию параметров регрессии основан на:
- а) методе наименьших квадратов:
- б) методе максимального правдоподобия:
- в) шаговом регрессионном анализе.
- 10. Остаточная сумма квадратов равна нулю:
- а) когда правильно подобрана регрессионная модель;
- б) когда между признаками существует точная функциональная связь;
- в) никогда.
- 11. Объясненная (факторная) сумма квадратов отклонений в линейной парной модели имеет число степеней свободы, равное: a) n - 1: б) 1; в) n -2.
- 12. Остаточная сумма квадратов отклонений в линейной парной модели имеет число степеней свободы, равное:
- б) 1; в) n -2.
- 13. Общая сумма квадратов отклонений в линейной парной модели имеет число степеней свободы, равное: в) n -2.
- 14. Для оценки значимости коэффициентов регрессии рассчитывают:
- б) t-критерий Стьюдента; а) F-критерий Фишера;
- в) коэффициент детерминации r_{rv}^2
- 15. Какое уравнение регрессии нельзя свести к линейному виду:
- a) $\hat{v} = a + b \cdot \ln x$; 6) $\hat{v} = a \cdot x^b$; B) $\hat{v} = a + b \cdot x^c$.
- 16. Какое из уравнений является степенным:
- a) $\hat{y} = a + b \cdot \ln x$; 6) $\hat{y} = a \cdot x^b$; B) $\hat{y} = a + b \cdot x^c$.
- 17. Параметр b в степенной модели является:
- а) коэффициентом детерминации;
- б) коэффициентом эластичности;
- в) коэффициентом корреляции.
- 18. Коэффициент корреляции r_{xy} может принимать значения:
- а) от 1 до 1; б) от 0 до 1; в) любые.
- 19. Для функции средний $y = a + \frac{b}{r} + \varepsilon$ коэффициент эластичности имеет вид:

a)
$$\overline{\partial} = \frac{b \cdot \overline{x}}{a + b \cdot \overline{x}}$$
; 6) $\overline{\partial} = -\frac{b}{a \cdot \overline{x} + b}$; B) $\overline{\partial} = -\frac{b \cdot \overline{x}}{a + b \cdot \overline{x}}$.

- 20. Какое из следующих уравнений нелинейно по оцениваемым параметрам: a) $\hat{y} = a + b \cdot x + \varepsilon$; 6) $\hat{y} = a + b \cdot \ln x + \varepsilon$; B) $\hat{y} = a \cdot x^b \cdot \varepsilon$. 21. Уравнение парной регрессии имеет вид $\,\hat{y} = 100 + 0,\,741x,\,r_{_{vx}} = 0,\!817$ а) 0,741 – средняя ошибка аппроксимации б) 0,741 – средний коэффициент эластичности в) 0,741 - коэффициент детерминации г) 0,741 — величина изменения $\hat{\mathbf{y}}$ при увеличении \mathbf{x} на единицу. 22. Дано уравнение парной линейной регрессии $\widehat{\mathbf{y}}=a+b\mathbf{x}$, коэффициент корреляции вычисляется по формуле: $\text{a)} \ \ r_{yx} = \frac{\overline{x}\overline{y} - \overline{x} \cdot \overline{y}}{\sigma_x \cdot \sigma_y}, \ \ \text{6)} \ \ r_{yx} = \frac{\overline{x} \cdot \overline{y} - \overline{x}\overline{y}}{\sigma_x^2},$ в) $r_{yx}=\dfrac{\overline{xy}-\overline{x}\cdot\overline{y}}{\sigma_{x}^{2}},\ \Gamma)\ r_{yx}=\dfrac{\overline{x}\cdot\overline{y}-\overline{xy}}{\sigma_{x}}.$ 23. Добавление в уравнение множественной регрессии новой объясняющей переменной: а) уменьшает значение коэффициента детерминации; б) увеличивает значение коэффициента детерминации; в) не оказывает никакого влияние на коэффициент детерминации. 24. Скорректированный коэффициент детерминации: а) меньше обычного коэффициента детерминации; б) больше обычного коэффициента детерминации; в) меньше или равен обычному коэффициенту детерминации;/ 25. С увеличением числа объясняющих переменных скорректированный коэффициент детерминации: а) увеличивается; б) уменьшается; в) не изменяется. 26. Число степеней свободы для остаточной суммы квадратов в линейной модели множественной регрессии равно: б) m; a) n - 1: B) n -m - 1. 27. Число степеней свободы для общей суммы квадратов в линейной модели множественной регрессии равно: a) n - 1; б) m; в) n -m - 1. 28. Число степеней свободы для факторной суммы квадратов в линейной модели множественной регрессии равно: a) n - 1: в) n –m - 1. 29. Множественный коэффициент корреляции $R_{yx_1x_2} = 0,9$. Определите, какой процент дисперсии зависимой переменной у объясняется влиянием факторов X_1 , X_2 : в) 19%. 30. Для построения модели линейной множественной регрессии вида $\hat{y} = a + b_1 x_1 + b_2 x_2$ необходимое количество наблюдений должно быть не менее: в) 14. 31. Стандартизованные коэффициенты регрессии β_i : а) позволяют ранжировать факторы по силе влияния их на результат; б) оценивают статистическую значимость факторов; в) являются коэффициентами эластичности. 32. Частные коэффициенты корреляции: а) характеризуют тесноту связи рассматриваемого набора факторов с исследуемым признаком; б) содержат поправку на число степеней свободы и не допускают преувеличения тесноты связи; в) характеризуют тесноту связи между результатом и соответствующим фактором при элиминировании других факторов, включенных в уравнение регрессии. 33. Частный F-критерий: а) оценивает значимость уравнения регрессии в целом; б) служит мерой для оценки включения фактора в модель; в) ранжирует факторы по силе их влияния на результат. 34. Несмещенность оценки параметра регрессии, полученной по МНК, означает: а) что она характеризуется наименьшей дисперсией; б) что математическое ожидание остатков равно нулю; в) увеличение ее точности с увеличением объема выборки. 35. Эффективность оценки параметра регрессии, полученной по МНК, означает: а) что она характеризуется наименьшей дисперсией; б) что математическое ожидание остатков равно нулю; в) увеличение ее точности с увеличением объема выборки. 36. Состоятельность оценки параметра регрессии, полученной по МНК, означает: а) что она характеризуется наименьшей дисперсией; б) что математическое ожидание остатков равно нулю; в) увеличение ее точности с увеличением объема выборки. 37. Укажите истинное утверждение: а) скорректированный и обычный коэффициенты множественной детерминации совпадают только в тех случаях, когда обычный коэффициент множественной детерминации равен нулю; б) стандартные ошибки коэффициентов регрессии определяются значениями всех параметров регрессии; в) при наличии гетероскедастичности оценки параметров регрессии становятся смещенными. 38. При наличии гетероскедастичности следует применять: а) обычный МНК; б) обобщенный МНК; в) метод максимального правдоподобия. 39. Фиктивные переменные – это:
 - б) экономические переменные, принимающие количественные значения в некотором интервале; в) значения зависимой переменной за предшествующий период времени.
- 40. Если качественный фактор три градации, то необходимое число фиктивных переменных:

а) атрибутивные признаки (например, как профессия, пол, образование), которым придали цифровые метки;

41. Дано уравнение линейной двухфакторной регрессии в стандартизованной форме $\hat{t} = \beta_1 t_1 + \beta_2 t_2$

$$\begin{split} & \text{a)} \, \beta_1 = \frac{r_{yx_1} - r_{x_1 x_2}}{1 - r_{x_1 x_2}^2} \,, \\ & \text{b)} \, \, \beta_1 = \frac{r_{yx_1} - r_{yx_2} r_{x_1 x_2}}{1 - r_{x_1 x_2}^2} \,, \\ & \text{b)} \, \, \beta_1 = \frac{r_{yx_1} - r_{yx_2} r_{x_1 x_2}}{1 - r_{x_1 x_2}^2} \,, \\ & \text{c)} \, \, \beta_1 = \frac{r_{yx_1} - r_{yx_2} r_{x_1 x_2}}{1 - r_{x_1 x_2}} \,. \end{split}$$

42. Дано уравнение линейной двухфакторной регрессии в стандартизованной форме $\hat{t} = \beta_1 t_1 + \beta_2 t_2$, тогда:

a)
$$\beta_2 = \frac{r_{yx_1} - r_{x_1x_2}}{1 - r_{x_1x_2}^2}$$
, 6) $\beta_2 = \frac{r_{yx_2} - r_{x_1x_2}}{1 - r_{x_1x_2}^2}$
B) $\beta_3 = \frac{r_{yx_2} - r_{yx_1}r_{x_1x_2}}{1 - r_{yx_1}^2}$, 7) $\beta_4 = \frac{r_{yx_1} - r_{yx_1}r_{x_1x_2}}{1 - r_{yx_1}^2}$

$$\beta_2 = \frac{r_{yx_2} - r_{yx_1} r_{x_1x_2}}{1 - r_{x_1x_2}^2}$$
, г) $\beta_2 = \frac{r_{yx_1} - r_{yx_1} r_{x_1x_2}}{1 - r_{x_1x_2}}$ 43. Дано уравнение линейной двухфакторной регрессии $\hat{y} = a + c$

43. Дано уравнение линейной двухфакторной регрессии $y = a + b_1 x_1 + b_2 x_2$

a)
$$r_{yx_2 \cdot x_1} = \frac{r_{yx_2} - r_{yx_1} r_{x_1 x_2}}{\sqrt{\left(1 - r^2 yx_1\right) \cdot \left(1 - r^2 x_1 x_2\right)}}$$

$$\text{6)} \ \ r_{yx_2 \cdot x_1} = \frac{r_{yx_1} - r_{yx_2} \, r_{x_1 x_2}}{\sqrt{\left(l - r^2_{yx_2}\right) \cdot \left(l - r^2_{x_1 x_2}\right)}}$$

$$\text{B) } r_{yx_2 \cdot x_1} = \frac{r_{yx_2} - r_{yx_1} r_{x_1 x_2}}{\left(l - r_{yx_1}^2 \right) \left(l - r_{x_1 x_2}^2\right)}$$

r)
$$r_{yx_2 \cdot x_1} = \frac{r_{yx_2} - r_{yx_1}}{\left(1 - r_{yx_1}^2\right)\left(1 - r_{x_1x_2}^2\right)}$$

44. Дано уравнение множественной линейной регрессии $\hat{t}_y = \beta_1 t_{x_1} + \beta_2 t_{x_2}$, коэффициент множественной корреляции равен:

a)
$$R = \beta_1 r_{yx_1} + \beta_2 r_{yx_2}$$
, 6) $R = \beta_1 r_{yx_1}^2 + \beta_2 r_{yx_2}^2$

$$\begin{split} \text{a)} \ \ R &= \beta_1 r_{yx_1} + \beta_2 r_{yx_2} \;, \quad \text{fo)} \; _{R} = \beta_1 r_{yx_1}^2 + \beta_2 r_{yx_2}^2 \;, \\ \text{B)} \ \ _{R} &= \beta_1 r_{yx_1}^2 - \beta_2 r_{yx_2}^2 \;, \qquad \text{r)} \; R = \sqrt{\beta_1 r_{yx_1} + \beta_2 r_{yx_2}} \;. \end{split}$$

45. Дано уравнение множественной линейной регрессии $\hat{y} = a + b_1 x_1 + b_2 x_2$

$$a) \ \overline{A} = \sum \frac{\left(y - \overline{y}\right)}{y} \cdot 100\% \,, \ \ 6) \ \ \overline{A} = \frac{1}{n} \sum \left(\frac{y - \overline{y}}{\overline{y}}\right) \cdot 100\% \,,$$

$$\overline{\mathbf{A}} = \frac{1}{n} \sum \left(\frac{y}{y - \bar{y}} \right) \cdot 100\%, \ r) \ \overline{A} = \frac{1}{n} \sum \left| \frac{y - \bar{y}}{y} \right| \cdot 100\%.$$

a)
$$F_{\text{расчетное}} < F_{\text{критическое}}$$
;

б)
$$F_{\text{расчетное}} \succ F_{\text{критическое}}$$
 ;

в)
$$F_{\text{расчетное}} = F_{\text{критическое}}$$
 .

- 47. Выберите правильную последовательность расчета индекса множественной корреляции (коэффициента детерминации):
- 1: расчет стандартизованных коэффициентов уравнения регрессии
- 2: расчет парных коэффициентов корреляции
- 3: расчет индекса корреляции
- a) 3, 1, 2;
- б) 1, 2, 3;; в) 2, 1, 3.
- 48. Наибольшее распространение в эконометрических исследованиях получили:
- а) системы независимых уравнений;
- б) системы рекурсивных уравнений;
- в) системы взаимозависимых уравнений.
- 49. Эндогенные переменные это:
- а) предопределенные переменные, влияющие на зависимые переменные, но не зависящие от них, обозначаются через х.;
- б) зависимые переменные, число которых равно числу уравнений в системе и которые обозначаются через у;
- в) значения зависимых переменных за предшествующий период времени.
- 50. Экзогенные переменные это:
- а) предопределенные переменные, влияющие на зависимые переменные, но не зависящие от них, обозначаются через х;
- б) зависимые переменные, число которых равно числу уравнений в системе и которые обозначаются через у;
- в) значения зависимых переменных за предшествующий период времени.
- 51. Лаговые переменные это:

- а) предопределенные переменные, влияющие на зависимые переменные, но не зависящие от них, обозначаются через х; б) зависимые переменные, число которых равно числу уравнений в системе и которые обозначаются через у; в) значения зависимых переменных за предшествующий период времени. 52. Для определения параметров структурную форму модели необходимо преобразовать в: а) приведенную форму модели; б) рекурсивную форму модели; в) независимую форму модели. 53. Модель идентифицируема, если: а) число приведенных коэффициентов меньше числа структурных коэффициентов; б) если число приведенных коэффициентов больше числа структурных коэффициентов; в) если число параметров структурной модели равно числу параметров приведенной формы модели. 54. Модель неидентифицируема, если: а) число приведенных коэффициентов меньше числа структурных коэффициентов; б) если число приведенных коэффициентов больше числа структурных коэффициентов; в) если число параметров структурной модели равно числу параметров приведенной формы модели. 55. Модель сверхидентифицируема, если: а) число приведенных коэффициентов меньше числа структурных коэффициентов; б) если число приведенных коэффициентов больше числа структурных коэффициентов; параметров приведенной формы модели. 56. Уравнение идентифицируемо, если: а) $\Pi + 1 \prec H$; б) $\Pi + 1 = H$; в) $\Pi + 1 > H$. 57. Уравнение неидентифицируемо, если: a) $\Pi + 1 \prec H$; б) $\Pi + 1 = H$; в) $\Pi + 1 > H$. 58. Уравнение сверхидентифицируемо, если: a) $\Pi + 1 \prec H$; в) $\Pi + 1 \succ H$. 59. Достаточное условие идентифицируемости ситемы уравнений: а) уравнение идентифицируемо, если по отсутствующим в нем переменным (эндогенным и экзогенным) можно из коэффициентов при них в других уравнениях системы получить матрицу, определитель которой равен нулю, а ранг матрицы не меньше, чем число экзогенных переменных в системе без одного. б) уравнение идентифицируемо, если по отсутствующим в нем переменным (эндогенным и экзогенным) можно из коэффициентов при них в других уравнениях системы получить матрицу, определитель которой не равен нулю, а ранг матрицы не меньше, чем число эндогенных переменных в системе без одного. в) уравнение идентифицируемо, если по присутствующим в нем переменным (эндогенным и экзогенным) можно из коэффициентов при них в других уравнениях системы получить матрицу, определитель которой не равен нулю, а ранг матрицы не меньше, чем число эндогенных переменных в системе без одного. 60. Система структурных уравнений точно идентифицирована. Для определения структурных коэффициентов используется: а) МНК, б) КМНК, в) ДМНК, г) ТМНК. 61. Система структурных уравнений не идентифицирована. Для определения структурных коэффициентов используется: а) ОМНК, б) МНК, в) ДМНК, г) ТМНК. 62. Система структурных уравнений сверхидентифицирована. Для определения структурных коэффициентов используется: а) МНК, б) ОМНК, в) КМНК, г) ДМНК. 63. Во временном ряде буквой T обозначается: а) сезонная компонента: б) тренд (тенденция изменения признака); в) случайная компонента; г) циклическая компонента. 64. Во временном ряде буквой $\, C \,$ обозначают: а) сезонная компонента; б) тренд (тенденция изменения признака); в) случайная компонента; г) циклическая компонента. 65.Во временном ряде буквой E' обозначают: а) сезонная компонента; б) тренд (тенденция изменения признака); в) случайная компонента; г) циклическая компонента. 66. Тренд во временном ряде: а) отражает влияние случайных факторов; б) описывает чистое влияние долговременных факторов, т. е. длительную («вековую») тенденцию изменения признака; в) отражает повторяемость экономического процесса в течение длительного периода времени; г) отражает повторяемость экономического процесса в течение не очень длительного периода времени (года, квартала, месяца и т. д.).
- а) отражает повторяемость экономического процесса в течение длительного периода времени;

67. Сезонная компонента во временном ряде:

```
б) описывает чистое влияние долговременных факторов, т. е. длительную («вековую») тенденцию изменения признака;
в) отражает влияние случайных факторов;
г) отражает повторяемость экономического процесса в течение не очень длительного периода времени (года, квартала, месяца и т. д.).
68. Аддитивная модель временного ряда имеет вид:
a) Y = T \cdot S \cdot E,
6) Y = T + S + E.
B) Y = E + S \cdot T.
69. Мультипликативная модель временного ряда имеет вид:
a) Y = T \cdot S \cdot E,
6) Y = T + S + E,
\mathbf{B}) \ Y = E + S \cdot T \ .
70. Коэффициент автокорреляции:
а) характеризует тесноту линейной связи текущего и предыдущего уровней ряда;
б) характеризует тесноту нелинейной связи текущего и предыдущего уровней ряда;
в) характеризует наличие или отсутствие тенденции.
71. Аддитивная модель временного ряда строится, если:
а) значения сезонной компоненты предполагаются постоянными для различных циклов;
б) амплитуда сезонных колебаний возрастает или уменьшается;
в) отсутствует тенденция.
72. Мультипликативная модель временного ряда строится, если:
а) значения сезонной компоненты предполагаются постоянными для различных циклов;
б) амплитуда сезонных колебаний возрастает или уменьшается;
в) отсутствует тенденция.
нения тренда исследовать нелинейные модели,
73. Для некоторого временного ряда получены значения коэффициентов автокорреляции
r_1 = 0.437, r_2 = 0.284, r_3 = 0.734, r_4 = 0.301, r_5 = 0.423
а) наличие сезонных колебаний длиной в 2 периода времени
б) наличие сезонных колебаний длиной в 3 периода времени
в) наличие сезонных колебаний длиной в 4 периода времени
г) наличие сезонных колебаний длиной в 5 периодов времени
74. Для некоторого временного ряда получены значения коэффициентов автокорреляции
r_1 = 0.137, r_2 = 0.642, r_3 = 0.567, r_4 = 0.301, r_5 = 0.423
а) наличие сезонных колебаний длиной в 2 периода времени
б) наличие сезонных колебаний длиной в 3 периода времени
в) наличие сезонных колебаний длиной в 4 периода времени
г) наличие сезонных колебаний длиной в 5 периодов времени
75. Для некоторого временного ряда получены значения коэффициентов автокорреляции
r_1 = 0.821, r_2 = 0.642, r_3 = 0.567, r_4 = 0.301, r_5 = 0.423
а) наличие сезонных колебаний длиной в 2 периода времени
б) наличие линейной тенденции
в) наличие сезонных колебаний длиной в 4 периода времени
г) наличие сезонных колебаний длиной в 5 периодов времени 76. Критерий Дарбина - Уотсона применяется для:
а) определения автокорреляции в остатках;
б) определения наличия сезонных колебаний;
в) для оценки существенности построенной модели.
77. Укажите ложное утверждение:
а) по высокому коэффициенту автокорреляции можно судить о наличии во ВР линейной или близкой к линейной тенденции;
б) по близким к нулю коэффициентам автокорреляции можно предполагать о наличии нелинейной тенденции или предполагать, что имеет место
модель авторегрессии или модель скользящих средних или другие виды моделей
в) по знаку коэффициента автокорреляции можно судить о возрастающей или убывающей тенденции.
78. Если d_B < d < 4-d_B:
а) принимается гипотеза об отрицательной автокорреляции;
б) определенного ответа тест не дает (область неопределенности теста);
в) принимается гипотеза о наличии положительной автокорреляции;
г) гипотеза об отсутствии автокорреляции принимается.
79. Если 4-d_H < d < 4, то:
а) принимается гипотеза об отрицательной автокорреляции;
б) определенного ответа тест не дает (область неопределенности теста);
в) принимается гипотеза о наличии положительной автокорреляции;
г) гипотеза об отсутствии автокорреляции принимается.
80. Если 0 < d < d_{H,}:
а) принимается гипотеза об отрицательной автокорреляции;
б) определенного ответа тест не дает (область неопределенности теста);
в) принимается гипотеза о наличии положительной автокорреляции;
```

Шкала оценивания:

0 баллов – аттестационная работа не выполнена или нет ни одного правильно выполненного задания.

При выполнении заданий количество баллов определяется по формуле $\mathbf{b} = \mathbf{Mo} * (\mathbf{BT/OKT}),$

Где: Мо – максимальная оценка в баллах (20 баллов);

г) гипотеза об отсутствии автокорреляции принимается.

ВТ – количество правильно выполненных тестов;

ОКТ – общее количество тестов.